A240184 Number of partitions of n such that (greatest part) > (multiplicity of least part).
0, 0, 1, 2, 2, 5, 6, 11, 14, 20, 29, 41, 52, 76, 98, 130, 170, 227, 288, 378, 477, 615, 778, 985, 1228, 1551, 1928, 2399, 2964, 3670, 4498, 5538, 6755, 8251, 10027, 12175, 14715, 17802, 21420, 25764, 30886, 37009, 44181, 52731, 62730, 74570, 88435, 104762
Offset: 0
Examples
a(6) counts these 6 partitions: 6, 51, 42, 411, 33, 321.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Min[p]]], {n, 0, z}] (* A240178 *) t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240182 *) t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Min[p]]], {n, 0, z}] (* A240183 *) t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Min[p]]], {n, 0, z}] (* A240184 *) t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240179 *)