A240187 Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.
1, 5, 12, 27, 73, 154, 358, 872, 1871, 4438, 10338, 22880, 54100, 123711, 279854, 655190, 1491102, 3413413, 7919449, 18045604, 41514375, 95741087, 218782546, 503899032, 1158409848, 2653808377, 6109601340, 14027233372, 32187863462
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2..0....2..0....2..0....2..0....2..0....2..0....2..0....2..0....2..0....2..0 ..1..0....1..0....1..3....2..0....2..0....1..3....1..3....2..0....2..3....1..3 ..2..3....2..3....1..2....2..0....2..3....2..1....2..3....2..0....2..3....2..3 ..1..2....1..3....2..3....1..0....2..3....1..2....1..0....2..0....1..0....1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A240192.
Formula
Empirical: a(n) = 2*a(n-2) + 10*a(n-3) - a(n-4) - 5*a(n-5) - 15*a(n-6) + a(n-7) + 4*a(n-8) + 2*a(n-9) + 10*a(n-10) + 5*a(n-11) - 6*a(n-13).
Empirical g.f.: x*(1 + 5*x + 10*x^2 + 7*x^3 - 10*x^5 - 6*x^6 - 5*x^7 - 6*x^8 + 4*x^9 + 4*x^10 + 6*x^11) / (1 - 2*x^2 - 10*x^3 + x^4 + 5*x^5 + 15*x^6 - x^7 - 4*x^8 - 2*x^9 - 10*x^10 - 5*x^11 + 6*x^13). - Colin Barker, Oct 27 2018