cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A240187 Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 5, 12, 27, 73, 154, 358, 872, 1871, 4438, 10338, 22880, 54100, 123711, 279854, 655190, 1491102, 3413413, 7919449, 18045604, 41514375, 95741087, 218782546, 503899032, 1158409848, 2653808377, 6109601340, 14027233372, 32187863462
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Examples

			Some solutions for n=4:
..2..0....2..0....2..0....2..0....2..0....2..0....2..0....2..0....2..0....2..0
..1..0....1..0....1..3....2..0....2..0....1..3....1..3....2..0....2..3....1..3
..2..3....2..3....1..2....2..0....2..3....2..1....2..3....2..0....2..3....2..3
..1..2....1..3....2..3....1..0....2..3....1..2....1..0....2..0....1..0....1..2
		

Crossrefs

Column 2 of A240192.

Formula

Empirical: a(n) = 2*a(n-2) + 10*a(n-3) - a(n-4) - 5*a(n-5) - 15*a(n-6) + a(n-7) + 4*a(n-8) + 2*a(n-9) + 10*a(n-10) + 5*a(n-11) - 6*a(n-13).
Empirical g.f.: x*(1 + 5*x + 10*x^2 + 7*x^3 - 10*x^5 - 6*x^6 - 5*x^7 - 6*x^8 + 4*x^9 + 4*x^10 + 6*x^11) / (1 - 2*x^2 - 10*x^3 + x^4 + 5*x^5 + 15*x^6 - x^7 - 4*x^8 - 2*x^9 - 10*x^10 - 5*x^11 + 6*x^13). - Colin Barker, Oct 27 2018

A240188 Number of nX3 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 8, 37, 138, 680, 2413, 10017, 43956, 159668, 681760, 2806434, 10675575, 45462460, 181764269, 715963401, 3000804172, 11895218236, 47847647772, 197325296591, 783759057127, 3182984036915, 12972975259195, 51820141213238
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Comments

Column 3 of A240192

Examples

			Some solutions for n=4
..2..0..0....2..0..0....2..0..0....2..0..0....2..0..0....2..0..0....2..0..0
..2..0..0....1..0..2....1..3..2....1..2..2....2..0..0....2..0..0....2..3..0
..2..0..0....2..3..0....2..3..2....1..2..1....2..3..3....2..0..3....2..3..3
..1..2..0....1..2..1....1..2..0....2..3..3....1..2..1....1..2..2....1..0..3
		

A240189 Number of nX4 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 14, 129, 771, 7170, 44594, 333607, 2715035, 17332017, 134735700, 1005601984, 6796746485, 52922791645, 379298005594, 2679740305873, 20445193269447, 144861185356798, 1052585343798258, 7856125918090405, 55861298280154250
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Comments

Column 4 of A240192

Examples

			Some solutions for n=4
..2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0
..1..3..2..0....1..2..0..2....1..0..0..2....1..0..2..2....1..3..2..0
..1..3..1..0....1..2..0..2....1..2..0..2....2..3..0..0....2..1..2..2
..2..1..2..2....2..3..0..2....2..1..0..2....1..2..0..2....1..3..3..1
		

A240190 Number of nX5 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 26, 478, 5240, 91879, 1005029, 14022582, 206345434, 2336659626, 33576330306, 449366013476, 5493251593060, 78352851554194, 1004322433621964, 12914862745129353, 179013685774367710, 2278292415139416158
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Comments

Column 5 of A240192

Examples

			Some solutions for n=4
..2..0..0..0..0....2..0..0..0..0....2..0..0..0..0....2..0..0..0..0
..1..2..0..2..2....2..0..0..0..0....1..0..2..0..0....1..2..2..0..0
..1..2..0..2..2....2..3..0..0..0....2..3..0..2..0....2..1..0..2..2
..2..3..0..0..0....2..3..3..2..0....1..3..1..0..2....1..2..0..1..2
		

A240191 Number of nX6 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 50, 1908, 40765, 1399773, 28061567, 733907809, 19388521135, 394134037392, 10503093361772, 254148197056864, 5694113978673887, 149969038048214610, 3469042519947752022, 82120588801140926261, 2085283919698276811475
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Comments

Column 6 of A240192

Examples

			Some solutions for n=4
..2..0..0..0..0..0....2..0..0..0..0..0....2..0..0..0..0..0....2..0..0..0..0..0
..1..2..0..0..2..0....1..2..2..0..2..0....1..2..2..0..2..2....1..0..2..0..0..2
..1..2..0..2..2..0....1..2..2..2..0..2....2..1..2..3..2..0....2..3..2..2..2..0
..2..3..0..0..2..0....2..3..0..2..0..0....1..2..2..3..3..2....1..3..2..1..1..2
		

A240193 Number of 3 X n 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

3, 12, 37, 129, 478, 1908, 7868, 32888, 138292, 583040, 2461028, 10393720, 43907108, 185502448, 783769556, 3311604104, 13992449972, 59122342816, 249810507844, 1055529401752, 4459952527044, 18844744947024, 79625166220340
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Examples

			Some solutions for n=4:
..2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0
..1..3..2..0....2..3..2..0....1..2..0..0....1..2..2..0....1..0..0..2
..1..3..2..3....2..3..2..0....1..2..2..0....1..2..1..3....2..3..0..0
		

Crossrefs

Row 3 of A240192.

Formula

Empirical: a(n) = 9*a(n-1) - 27*a(n-2) + 29*a(n-3) + 6*a(n-4) - 32*a(n-5) + 16*a(n-6) for n>9.
Empirical g.f.: x*(3 - 15*x + 10*x^2 + 33*x^3 - 50*x^4 + 40*x^5 - 25*x^6 - 52*x^7 + 72*x^8) / ((1 - x)*(1 - 2*x)*(1 - 6*x + 7*x^2 + 4*x^3 - 8*x^4)). - Colin Barker, Oct 27 2018

A240194 Number of 4Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 27, 138, 771, 5240, 40765, 336257, 2843914, 24331713, 209365217, 1806459338, 15606899530, 134920604706, 1166738652794, 10090988027354, 87282067470301, 754973088693125, 6530482231898003, 56488830699787694, 488631696598081278
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Comments

Row 4 of A240192

Examples

			Some solutions for n=4
..2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0
..1..2..2..0....1..0..2..2....1..2..2..2....1..2..2..2....1..0..2..0
..2..1..1..3....1..3..2..0....2..1..2..2....2..1..2..0....1..3..2..3
..1..3..3..2....2..3..0..0....1..3..3..2....1..3..3..2....2..1..0..2
		

Formula

Empirical: a(n) = 27*a(n-1) -294*a(n-2) +1660*a(n-3) -4909*a(n-4) +4008*a(n-5) +28110*a(n-6) -141830*a(n-7) +316164*a(n-8) -141103*a(n-9) -1161198*a(n-10) +2896480*a(n-11) -1515959*a(n-12) -3659154*a(n-13) +5143300*a(n-14) -13602*a(n-15) -280443*a(n-16) -7998970*a(n-17) +9853042*a(n-18) +2165540*a(n-19) -18119292*a(n-20) +21393552*a(n-21) -1551144*a(n-22) -20485792*a(n-23) +14878784*a(n-24) +4182464*a(n-25) -7981312*a(n-26) +1462784*a(n-27) +1097728*a(n-28) -368640*a(n-29) for n>34

A240195 Number of 5Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

7, 73, 680, 7170, 91879, 1399773, 22849697, 385366572, 6605282704, 114179317079, 1982427469366, 34498669503396, 601074631406014, 10479195138240937, 182755667269396463, 3187784517998728377, 55609182290464067412
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Comments

Row 5 of A240192

Examples

			Some solutions for n=4
..2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0
..1..2..2..0....1..0..0..0....1..0..0..2....1..2..0..2....1..0..2..2
..2..1..2..0....1..3..3..2....2..3..3..1....2..1..0..0....1..2..0..2
..1..3..3..0....2..1..2..2....1..2..2..3....1..3..2..0....2..1..1..2
..1..2..2..2....2..0..0..3....2..1..1..2....2..1..2..0....1..3..3..2
		

A240196 Number of 6Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

10, 154, 2413, 44594, 1005029, 28061567, 865984451, 28244997476, 950400971626, 32552155169398, 1126145490896545, 39177784539954116, 1367229766875959294, 47796738284241424246, 1672533868898522421472, 58557827201940558624795
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Comments

Row 6 of A240192

Examples

			Some solutions for n=3
..2..0..0....2..0..0....2..0..0....2..0..0....2..0..0....2..0..0....2..0..0
..2..0..0....1..3..2....2..3..0....1..0..2....1..3..2....2..0..0....1..0..2
..2..0..0....2..1..1....2..3..3....1..2..0....2..1..2....2..3..3....2..3..0
..1..3..2....1..2..2....1..2..2....2..1..0....1..3..3....1..2..1....1..2..1
..2..1..1....1..2..1....1..2..1....1..3..2....2..1..1....2..3..0....2..1..2
..1..3..3....2..3..0....2..1..1....1..2..2....2..3..0....1..3..2....2..0..0
		

A240186 Number of n X n 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 5, 37, 771, 91879, 28061567, 43398047802
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Comments

Diagonal of A240192.

Examples

			Some solutions for n=4
..2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0
..1..2..0..2....1..3..2..0....1..0..0..0....1..0..2..2....1..3..2..0
..2..1..0..2....2..1..1..3....1..3..3..0....1..2..2..2....2..1..2..0
..1..2..0..2....1..0..3..2....2..1..2..2....2..1..0..0....1..2..2..0
		

Crossrefs

Cf. A240192.
Showing 1-10 of 11 results. Next