A240219 Number of partitions p of n such that median(p) = mean(p).
1, 2, 3, 4, 4, 8, 5, 9, 10, 14, 7, 24, 8, 22, 31, 28, 10, 56, 11, 71, 68, 47, 13, 143, 69, 66, 147, 216, 16, 367, 17, 241, 304, 122, 509, 1019, 20, 163, 603, 1238, 22, 1712, 23, 1789, 3144, 286, 25, 3956, 1581, 2481, 2101, 4638, 28, 7739, 7357, 9209, 3737
Offset: 1
Examples
a(6) counts these 8 partitions: 6, 51, 42, 33, 331, 222, 2211, 111111.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; Median[p] < Mean[p]], {n, 1, z}] (* A240217 *) Table[Count[f[n], p_ /; Median[p] <= Mean[p]], {n, 1, z}] (* A240218 *) Table[Count[f[n], p_ /; Median[p] == Mean[p]], {n, 1, z}] (* A240219 *) Table[Count[f[n], p_ /; Median[p] > Mean[p]], {n, 1, z}] (* A240220 *) Table[Count[f[n], p_ /; Median[p] >= Mean[p]], {n, 1, z}] (* A240221 *)