A240220 Number of partitions p of n such that median(p) > mean(p).
0, 0, 0, 0, 1, 0, 2, 3, 4, 4, 11, 7, 19, 23, 22, 28, 53, 49, 88, 86, 92, 124, 203, 189, 250, 341, 386, 390, 594, 533, 815, 972, 1130, 1527, 1663, 1380, 2022, 2738, 3246, 3295, 4601, 4628, 6407, 6935, 6306, 8459, 11486, 11493, 13904, 16214, 19615, 21423
Offset: 1
Examples
a(8) counts these 3 partitions: 431, 332, 22211.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; Median[p] < Mean[p]], {n, 1, z}] (* A240217 *) Table[Count[f[n], p_ /; Median[p] <= Mean[p]], {n, 1, z}] (* A240218 *) Table[Count[f[n], p_ /; Median[p] == Mean[p]], {n, 1, z}] (* A240219 *) Table[Count[f[n], p_ /; Median[p] > Mean[p]], {n, 1, z}] (* A240220 *) Table[Count[f[n], p_ /; Median[p] >= Mean[p]], {n, 1, z}] (* A240221 *)