cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240222 Rectangular array giving all start values M(n, k), k >= 1, for Collatz sequences following the pattern (udd)^(n-1) ud, n >= 1, read by antidiagonals.

This page as a plain text file.
%I A240222 #28 Feb 16 2025 08:33:21
%S A240222 1,3,1,5,9,1,7,17,33,1,9,25,65,129,1,11,33,97,257,513,1,13,41,129,385,
%T A240222 1025,2049,1,15,49,161,513,1537,4097,8193,1,17,57,193,641,2049,6145,
%U A240222 16385,32769,1,19,65,225,769,2561,8193,24577,65537,131073,1,21,73,257,897,3073,10241,32769,98305
%N A240222 Rectangular array giving all start values M(n, k), k >= 1, for Collatz sequences following the pattern (udd)^(n-1) ud, n >= 1, read by antidiagonals.
%C A240222 The companion array and triangle for the end numbers N(n, k) is given in A240223.
%C A240222 The two operations on natural numbers m used in the Collatz 3x+1 conjecture are here (following the M. Trümper paper given in the link) denoted by u for 'up' and d for 'down': u m = 3*m+1, if m is odd, and d m = m/2 if m is even. The present array gives all start numbers M(n, k) for Collatz sequences realizing the Collatz word (udd)^n ud = (sd)^n s (s = ud is useful because, except for the one letter word u, at least one d follows a letter u), with n >= 1, and k >= 1. The length of these Collatz sequences 3*n. For these Collatz sequences M(n, 0) = M(1, 0) = 1 and N(n, 0) = N(1, 0) = 2.
%H A240222 Wolfdieter Lang, <a href="/A240222/a240222.pdf">Rectangular array and triangle.</a>
%H A240222 Wolfdieter Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lang/lang6.html">On Collatz' Words, Sequences and Trees</a>, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
%H A240222 Manfred Trümper, <a href="http://dx.doi.org/10.1155/2014/756917">The Collatz Problem in the Light of an Infinite Free Semigroup</a>, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
%H A240222 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CollatzProblem.html">Collatz Problem</a>.
%H A240222 Wikipedia, <a href="https://en.wikipedia.org/wiki/Collatz_conjecture">Collatz Conjecture</a>
%F A240222 The array: M(n, k) = 1 + 2^(2*n-1)*k for n >= 1 and k >= 0.
%F A240222 The triangle: TM(m, n) = M(n,m-n+1) = 1 + 2^(2*n-1)*(m-n+1) for m+1 >= n >= 1 and 0 for m+1 < n.
%e A240222 The rectangular array M(n, k) begins:
%e A240222 n\k 0       1       2       3       4       5 ...
%e A240222 1:  1       3       5       7       9      11
%e A240222 2:  1       9      17      25      33      41
%e A240222 3:  1      33      65      97     129     161
%e A240222 4:  1     129     257     385     513     641
%e A240222 5:  1     513    1025    1537    2049    2561
%e A240222 6:  1    2049    4097    6145    8193   10241
%e A240222 7:  1    8193   16385   24577   32769   40961
%e A240222 8:  1   32769   65537   98305  131073  163841
%e A240222 9:  1  131073  262145  393217  524289  655361
%e A240222 10: 1  524289 1048577 1572865 2097153 2621441
%e A240222 ...
%e A240222 For more columns see the link.
%e A240222 The triangle TM(m, n) begins (zeros are not shown):
%e A240222 k\n  1  2   3   4    5     6      7 ...
%e A240222 0:   1
%e A240222 1:   3  1
%e A240222 2:   5  9   1
%e A240222 3:   7 17  33   1
%e A240222 4:   9 25  65 129    1
%e A240222 5:  11 33  97 257  513     1
%e A240222 6:  13 41 129 385 1025  2049      1
%e A240222 ...
%e A240222 For more rows see the link.
%e A240222 n=1, ud, k=0: M(1, 0) = 1 = TM(0, 1), N(1, 0) = 2 with the Collatz sequence [1, 4, 2] of
%e A240222 length 3.
%e A240222 n=1, ud, k=2: M(1, 2) = 5 = TM(2, 1), N(1,  2) = 8 with the Collatz sequence [5, 16, 8] of length 3.
%e A240222 n=2, uddud, k=0: M(2, 0) = 1 = TM(1, 2), Ne(2, 0) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
%Y A240222 Cf. A238475, A238476, A239126, A239127.
%K A240222 nonn,easy,tabl
%O A240222 1,2
%A A240222 _Wolfdieter Lang_, Apr 02 2014