cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240223 Rectangular companion array to M(n,k), given in A240222, showing the end numbers N(n, k), k >= 1, for the Collatz operation (udd)^(n-1) ud, n >= 1, read by antidiagonals.

This page as a plain text file.
%I A240223 #27 Oct 20 2023 06:44:32
%S A240223 2,5,2,8,11,2,11,20,29,2,14,29,56,83,2,17,38,83,164,245,2,20,47,110,
%T A240223 245,488,731,2,23,56,137,326,731,1460,2189,2,26,65,164,407,974,2189,
%U A240223 4376,6563,2,29,74,191,488,1217,2918,6563,13124,19685,2,32,83,218,569,1460,3647,8750,19685,39368,59051,2
%N A240223 Rectangular companion array to M(n,k), given in A240222, showing the end numbers N(n, k), k >= 1, for the Collatz operation (udd)^(n-1) ud, n >= 1, read by antidiagonals.
%C A240223 The companion array and triangle for the start numbers M(n, k) is given in A240222.
%C A240223 For the Collatz operations u (for 'up') and d (for 'down') see the comment on A240222, also for links, especially for the M. Trümper paper.
%H A240223 Wolfdieter Lang, <a href="/A240223/a240223.pdf">Rectangular array and triangle.</a>
%H A240223 Wolfdieter Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lang/lang6.html">On Collatz Words, Sequences, and Trees</a>, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
%H A240223 Manfred Trümper, <a href="http://dx.doi.org/10.1155/2014/756917">The Collatz Problem in the Light of an Infinite Free Semigroup</a>, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
%F A240223 The array: N(n, k) =  2 + 3^n*k for n >= 1 and k >= 0.
%F A240223 The triangle: TN(m, n) = N(n,m-n+1) =  2 + 3^n*(m-n+1) for m+1 >= n >= 1 and 0 for m+1 < n.
%e A240223 The rectangular array N(n, k) begins
%e A240223   n\k 0      1       2       3       4       5 ...
%e A240223   1:  2      5       8      11      14      17
%e A240223   2:  2     11      20      29      38      47
%e A240223   3:  2     29      56      83     110     137
%e A240223   4:  2     83     164     245     326     407
%e A240223   5:  2    245     488     731     974    1217
%e A240223   6:  2    731    1460    2189    2918    3647
%e A240223   7:  2   2189    4376    6563    8750   10937
%e A240223   8:  2   6563   13124   19685   26246   32807
%e A240223   9:  2  19685   39368   59051   78734   98417
%e A240223   10: 2  59051  118100  177149  236198  295247
%e A240223   ...
%e A240223 For more columns see the link.
%e A240223 The triangle TN(m, n) begins (zeros are not shown):
%e A240223   m\n  1  2   3   4    5    6    7 ...
%e A240223   0:   2
%e A240223   1:   5  2
%e A240223   2:   8 11   2
%e A240223   3:  11 20  29   2
%e A240223   4:  14 29  56  83    2
%e A240223   5:  17 38  83 164  245    2
%e A240223   6:  20 47 110 245  488  731    2
%e A240223   ...
%e A240223 For more rows see the link.
%e A240223 n=1, ud, k=0: M(1, 0) = 1, N(1, 0) = TN(0, 1) = 2 with the Collatz sequence [1, 4, 2] of length 3.
%e A240223 n=1, ud, k=2: M(1, 2) = 5, N(1, 2) = TN(2, 1) = 8 with the Collatz sequence [5, 16, 8] of length 3.
%e A240223 n=2, uddud, k=0: M(2, 0) = 1, Ne(2, 0) = TN(1, 2) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
%Y A240223 Cf. A238475, A238476, A239126, A239127, A240222, A016789 (first row of N), A017185 (second row of N).
%K A240223 nonn,easy,tabl
%O A240223 0,1
%A A240223 _Wolfdieter Lang_, Apr 04 2014