This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240224 #7 May 08 2018 15:11:56 %S A240224 1,2,3,2,1,3,1,5,3,2,5,1,3,2,1,5,2,8,5,3,5,2,1,8,1,5,3,1,8,2,5,3,2,8, %T A240224 3,8,2,1,5,3,2,1,8,3,1,13,8,5,8,3,2,13,1,8,5,1,8,3,2,1,13,2,8,5,2,13, %U A240224 3,13,2,1,8,5,3,8,5,2,1,13,3,1,8,5,3,1,13,5,13,3,2,8,5,3,2,13,5,1,13,3,2,1,8,5,3,2,1,13,5,2 %N A240224 Irregular triangular array read by rows: row n gives a list of the partitions of n into distinct Fibonacci numbers. The order of the partitions is like in Abramowitz-Stegun. %C A240224 The row length sequence is A240225. The number of partitions in row n is A000119(n). %C A240224 The order of the partitions is like in Abramowitz-Stegun (rising number of parts, within like part numbers lexicographic) but here the order of the parts has been reversed, that is they are ordered decreasingly. %H A240224 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %e A240224 The array with separated partitions begins: %e A240224 n\k 1 2 3 4 5 ... %e A240224 1: 1 %e A240224 2: 2 %e A240224 3: 3 2,1 %e A240224 4: 3,1 %e A240224 5: 5 3,2 %e A240224 6: 5,1 3,2,1 %e A240224 7: 5,2 %e A240224 8: 8 5,3 5,2,1 %e A240224 9: 8,1 5,3,1 %e A240224 10: 8,2 5,3,2 %e A240224 11: 8,3 8,2,1 5,3,2,1 %e A240224 12: 8,3,1 %e A240224 13: 13 8,5 8,3,2 %e A240224 14: 13,1 8,5,1 8,3,2,1 %e A240224 15: 13,2 8,5,2 %e A240224 16: 13,3 13,2,1 8,5,3 8,5,2,1 %e A240224 17: 13,3,1 8,5,3,1 %e A240224 18: 13,5 13,3,2 8,5,3,2 %e A240224 19: 13,5,1 13,3,2,1 8,5,3,2,1 %e A240224 20: 13,5,2 %e A240224 21: 21 13,8 13,5,3 13,5,2,1 %e A240224 22: 21,1 13,8,1 13,5,3,1 %e A240224 23: 21,2 13,8,2 13,5,3,2 %e A240224 24: 21,3 21,2,1 13,8,3 13,8,2,1 13,5,3,2,1 %e A240224 25: 21,3,1 13,8,3,1 %e A240224 ... %Y A240224 Cf. A000119, A239001, A240225. %K A240224 nonn,tabf %O A240224 1,2 %A A240224 _Wolfdieter Lang_, Apr 07 2014