cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240229 a(n) is the shortest concatenation of the Fibonacci numbers F(1), F(2), ..., divisible by F(n) = A000045(n), n >= 1. a(n) = 0 if there is no such concatenation.

Original entry on oeis.org

1, 1, 112, 11235, 11235, 112, 1123581321345589144233, 11235, 11235813213455891442333776109871597258, 11235813213455891442333776109871597258441816765, 1123581321345589144233377610987159725844181676, 1123581321345589144233377610987159725844181676510946177112865746368
Offset: 1

Views

Author

Wolfdieter Lang, May 10 2014

Keywords

Comments

The corresponding numbers a(n)/F(n) are 1, 1, 56, 3745, 2247, 14, 86429332411199164941, 535, 330465094513408571833346356172694037, 204287512971925298951523201997665404698942123, 12624509228602125216105366415586064335327884, 7802648064899924612731788965188609207251261642437126229950456572, ...
The author's opinion is that this is an example of a not-so-interesting sequence. I call this a WOTS (waste of time sequence). But because I had to write a program to test similar proposed sequences I thought I would apply it to this prominent example.
The next entry a(13) has 324 digits for the divisibility by F(13) = 233 with a(13)/F(13) a 321 digit composite. The given a(n) are all nonprimes.
Question: is there an n with a(n) = 0?

Examples

			a(3) = 112 because neither 1 nor 11 are divisible by F(3) = 2, but 112, the concatenation of F(1), F(2) and F(3) is.
		

Crossrefs

Formula

See the name.