cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240231 Number of factors needed in the unique factorization of positive integers into terms of A186285 where any term is used at most twice.

This page as a plain text file.
%I A240231 #35 Sep 28 2023 04:25:02
%S A240231 1,1,1,2,1,2,1,1,2,2,1,3,1,2,2,2,1,3,1,3,2,2,1,2,2,2,1,3,1,3,1,3,2,2,
%T A240231 2,4,1,2,2,2,1,3,1,3,3,2,1,3,2,3,2,3,1,2,2,2,2,2,1,4,1,2,3,2,2,3,1,3,
%U A240231 2,3,1,3,1,2,3,3,2,3,1,3,2,2,1,4,2,2,2,2,1,4,2,3,2,2,2,4,1,3,3,4,1,3,1,2,3
%N A240231 Number of factors needed in the unique factorization of positive integers into terms of A186285 where any term is used at most twice.
%C A240231 The number 1 with factorization defined to be 1 has been included. See a comment on A240230.
%C A240231 This is the row length sequence for the table A240230.
%C A240231 a(n) = 1 if and only if n = 1 or n is a term of A186285.
%H A240231 Antti Karttunen, <a href="/A240231/b240231.txt">Table of n, a(n) for n = 1..10000</a>
%H A240231 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A240231 a(n) is, for n >= 2, the sum of all entries in the base 3 representation of the exponents of the primes in the usual prime number factorization of n.
%F A240231 From _Antti Karttunen_, Aug 12 2017: (Start)
%F A240231 That is, apart from the initial term, additive with a(p^e) = A053735(e).
%F A240231 Define b(1) = 0; and for n > 1, b(n) = A053735(A067029(n)) + b(A028234(n)). Then a(n) = b(n) for n > 1, with a(1) = 1 by convention.
%F A240231 (End)
%F A240231 Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.38090372984518844518..., where f(x) = -x + Sum_{k>=0} (x^(3^k) + 2*x^(2*3^k))/(1 + x^(3^k) + x^(2*3^k)). - _Amiram Eldar_, Sep 28 2023
%e A240231 a(12) = 3 because the usual prime factorization is 12 = 2^2*3^1 and (2)_3 = [2] and (1)_3 = [1], hence the sum of the base-3 representations of the exponents is 3.
%e A240231 a(24) = 2 as 24 = 3*8, using two factors from A186285. Note also how 3*8 = 3^1 * 2^3, and ternary representations of 1 and 3 are "1" and "10", thus their digit sum is 2. - _Antti Karttunen_, Aug 12 2017
%e A240231 a(36) = 4 from 2^2*3^2, (2)_3 = [2] and 2 + 2 = 4.
%t A240231 Block[{nn = 105, s}, s = Select[Select[Range@ nn, PrimePowerQ], IntegerQ@ Log[3, FactorInteger[#][[1, -1]]] &]; {1}~Join~Table[Length@ Rest@ NestWhileList[Function[{k, m}, {k/#, #} &@ SelectFirst[Reverse@ TakeWhile[s, # <= k &], Divisible[k, #] &]] @@ # &, {n, 1}, First@ # > 1 &][[All, -1]], {n, 2, nn}]] (* _Michael De Vlieger_, Aug 14 2017 *)
%t A240231 a[n_] := Total[Plus @@ IntegerDigits[#, 3] & /@ (FactorInteger[n][[;; , 2]])]; Array[a, 100] (* _Amiram Eldar_, May 18 2023 *)
%o A240231 (Scheme)
%o A240231 (define (A240231 n) (if (= 1 n) n (A240231with_a1_0 n)))
%o A240231 (definec (A240231with_a1_0 n) (if (= 1 n) 0 (+ (A053735 (A067029 n)) (A240231with_a1_0 (A028234 n)))))
%o A240231 ;; _Antti Karttunen_, Aug 12 2017
%Y A240231 Cf. A053735, A077761,A186285, A240230.
%K A240231 nonn,easy
%O A240231 1,4
%A A240231 _Wolfdieter Lang_, May 15 2014
%E A240231 Description clarified and more terms added by _Antti Karttunen_, Aug 12 2017