cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A240242 Decimal expansion of Integral_(x=1..c) (log(x)/(1+x))^2 dx, where c = A141251 = e^(LambertW(1/e)+1) corresponds to the maximum of the function.

Original entry on oeis.org

1, 3, 8, 4, 7, 5, 3, 2, 4, 2, 5, 8, 4, 8, 0, 4, 9, 0, 4, 1, 4, 3, 3, 3, 3, 6, 8, 5, 5, 3, 5, 1, 6, 2, 8, 7, 5, 8, 9, 2, 9, 0, 0, 0, 0, 2, 1, 9, 5, 7, 7, 8, 3, 1, 5, 8, 3, 4, 3, 7, 0, 8, 5, 7, 1, 9, 9, 4, 3, 9, 0, 8, 2, 6, 3, 2, 6, 6, 3, 9, 8, 3, 5, 4, 9, 8, 9, 3, 7, 0, 0, 6, 8, 2, 8, 5, 6, 3, 9, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 03 2014

Keywords

Examples

			0.13847532425848...
		

Crossrefs

Programs

  • Mathematica
    w = ProductLog[1/E]; Pi^2/6 - w - w^2 - 2*Log[1+w]*(1+w) + 2*PolyLog[2, -w] // RealDigits[#, 10, 100]& // First
  • PARI
    (w -> Pi^2/6 - w - w^2 - 2*(1+w)*log(1+w) + 2*polylog(2, -w))(lambertw(exp(-1))) \\ Charles R Greathouse IV, Aug 27 2014

Formula

(log(c)/(1+c))^2 = (LambertW(1/e))^2 = 0.0775425...
Showing 1-1 of 1 results.