cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240265 Numbers that divide the concatenation of their aliquot divisors, in ascending order.

This page as a plain text file.
%I A240265 #17 Feb 18 2021 00:46:21
%S A240265 1,4,15,16,255,375,495,795,1469,3825,9375,28125,66375,67875,234375,
%T A240265 249487,286875,309375,337185,450615,590625,628125,1369125,2390625,
%U A240265 2773125,2781387,3069375,3706785,4965309,5859375,12890625,13539375,26803125,39607575,62578125
%N A240265 Numbers that divide the concatenation of their aliquot divisors, in ascending order.
%C A240265 The sequence is infinite, because it contains all the numbers of the form 3*5^(2k+1). - _Giovanni Resta_, Apr 03 2014
%e A240265 Aliquot divisors of 1469 are 1, 13, 113. Their concatenation in ascending order is 113113 and 113113/1469 = 77.
%p A240265 with(numtheory);
%p A240265 T:=proc(t) local x,y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
%p A240265 P:=proc(q) local a,b,c,d,i,k,n;
%p A240265 for n from 2 to q do a:=sort([op(divisors(n))]); b:=a[nops(a)-1];
%p A240265 for i from nops(a)-2 by -1 to 1 do b:=b+a[i]*10^T(b); od;
%p A240265 if type(b/n,integer) then print(n); fi;
%p A240265 od; end: P(10^6);
%t A240265 Select[Range[6258*10^4],Divisible[FromDigits[Flatten[IntegerDigits/@ Most[ Divisors[ #]]]],#]&] (* _Harvey P. Dale_, Aug 21 2019 *)
%Y A240265 Cf. A069872, A224930.
%K A240265 nonn,base
%O A240265 1,2
%A A240265 _Paolo P. Lava_, Apr 03 2014
%E A240265 a(14)-a(34) from _Giovanni Resta_, Apr 03 2014
%E A240265 First term (a(1) = 1) prepended by _Harvey P. Dale_, Aug 21 2019