cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A240266 Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 7, 14, 36, 72, 170, 411, 879, 2106, 4874, 10808, 25648, 58383, 132428, 310199, 704308, 1615735, 3746472, 8529529, 19647966, 45277950, 103456016, 238430432, 547803553, 1255188579, 2890336834, 6633676274, 15225374578, 35023723614
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Examples

			Some solutions for n=4:
..3..2....3..2....3..2....3..0....2..3....3..2....3..0....2..0....2..3....3..2
..3..1....2..1....3..2....3..2....2..1....2..1....2..3....2..0....2..1....3..2
..2..1....3..2....2..3....2..1....3..0....3..1....3..1....3..2....3..2....2..3
..2..0....3..1....3..1....2..1....2..3....2..3....3..2....2..1....3..2....3..2
		

Crossrefs

Column 2 of A240271.

Formula

Empirical: a(n) = 2*a(n-2) + 10*a(n-3) - a(n-4) - 5*a(n-5) - 15*a(n-6) + a(n-7) + 4*a(n-8) + 2*a(n-9) + 10*a(n-10) + 5*a(n-11) - 6*a(n-13).
Empirical g.f.: x*(1 + x)*(4 + 3*x + 3*x^2 - 21*x^3 - x^4 - 14*x^5 + 30*x^6 - 4*x^7 + 27*x^8 - x^9 + 2*x^10 - 12*x^11) / (1 - 2*x^2 - 10*x^3 + x^4 + 5*x^5 + 15*x^6 - x^7 - 4*x^8 - 2*x^9 - 10*x^10 - 5*x^11 + 6*x^13). - Colin Barker, Oct 27 2018

A240267 Number of nX3 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

10, 35, 118, 582, 2000, 8353, 37422, 135463, 580528, 2403439, 9094559, 38858731, 155489063, 610603047, 2566277060, 10164936522, 40839681679, 168734662196, 669445744507, 2718398151862, 11090164669401, 44257273047277
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Column 3 of A240271

Examples

			Some solutions for n=4
..2..3..2....3..2..0....3..2..3....3..2..2....3..2..2....3..2..3....3..2..2
..2..1..1....2..1..0....3..2..2....2..1..2....3..1..2....3..1..2....3..1..2
..2..0..3....3..2..2....2..3..3....3..2..2....2..3..2....2..3..3....2..3..3
..2..0..1....2..3..0....2..1..2....2..3..0....3..0..2....3..0..2....3..2..2
		

A240268 Number of nX4 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

24, 157, 919, 8265, 49921, 382690, 3076452, 19781372, 154994425, 1144262410, 7794166168, 60672207307, 432430357219, 3074960725990, 23390892029200, 165455143739679, 1206985642463001, 8980338421458244, 63888419650679414
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Column 4 of A240271

Examples

			Some solutions for n=4
..3..2..2..2....3..2..2..0....3..0..0..0....3..2..3..3....3..2..2..0
..3..1..1..2....3..2..2..2....2..3..0..2....3..1..1..3....3..1..1..0
..2..1..2..3....2..3..3..2....3..2..0..0....2..3..2..1....2..3..3..3
..2..0..3..2....2..1..1..3....2..1..2..0....3..0..2..2....3..0..2..2
		

A240269 Number of nX5 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

56, 713, 7562, 126286, 1363144, 19210586, 278945445, 3200032085, 46095401280, 611757450541, 7547496685660, 107236644548985, 1371266497746832, 17737107517230511, 244729672768718950, 3116623507000444656
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Column 5 of A240271

Examples

			Some solutions for n=4
..3..0..0..2..3....3..2..2..2..2....2..0..3..2..2....2..0..0..3..0
..3..2..2..0..1....2..1..1..2..1....2..0..3..2..2....2..0..0..3..2
..2..1..0..0..2....3..2..3..3..2....3..2..2..2..0....3..2..0..0..2
..2..1..2..0..0....2..3..0..2..1....3..2..0..2..0....3..1..3..1..3
		

A240270 Number of nX6 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

132, 3263, 64721, 2059061, 40760821, 1063706501, 27923918285, 576407548906, 15326042676144, 369518944004863, 8336460134026971, 218307022801923486, 5056252479593806048, 120075470956639787034, 3035930439648129383298
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Column 6 of A240271

Examples

			Some solutions for n=3
..2..3..2..2..0..0....3..0..2..0..0..0....2..3..0..3..3..0....2..3..2..2..0..3
..2..1..1..1..2..2....2..3..2..0..0..0....2..1..2..2..2..2....2..1..2..0..0..3
..2..0..3..3..1..2....3..2..0..2..2..0....3..0..2..3..1..0....3..0..2..0..2..1
		

A240272 Number of 2Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

3, 7, 35, 157, 713, 3263, 14895, 68101, 311509, 1424689, 6516312, 29807450, 136351053, 623728103, 2853225545, 13052077767, 59706884718, 273130241113, 1249440509707, 5715597380517, 26146153523610, 119606300969406
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Row 2 of A240271

Examples

			Some solutions for n=4
..3..2..2..0....3..2..3..3....3..2..0..0....3..2..0..3....3..0..2..2
..2..1..1..2....3..1..1..2....3..2..0..0....3..2..2..2....3..2..2..0
		

Formula

Empirical: a(n) = 8*a(n-1) -20*a(n-2) +34*a(n-3) -84*a(n-4) +92*a(n-5) -68*a(n-6) +222*a(n-7) +13*a(n-8) -251*a(n-9) +25*a(n-10) -495*a(n-11) +485*a(n-12) -44*a(n-13) -180*a(n-14) +554*a(n-15) -648*a(n-16) +14*a(n-17) +152*a(n-18) -190*a(n-19) -140*a(n-20) +397*a(n-21) -273*a(n-22) +75*a(n-23) +167*a(n-24) -136*a(n-25) +27*a(n-26) for n>28

A240273 Number of 3Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 14, 118, 919, 7562, 64721, 563496, 4956889, 43888821, 390006208, 3473152825, 30971163817, 276395100537, 2467754655037, 22039067141607, 196858997624033, 1758568575970935, 15710437359317486, 140356344121017589
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Row 3 of A240271

Examples

			Some solutions for n=4
..2..3..2..0....2..0..0..0....2..0..3..0....2..3..0..2....3..0..0..0
..2..1..1..2....2..0..3..3....2..0..3..3....2..1..2..2....2..3..0..3
..3..2..2..0....3..0..1..2....3..0..0..1....2..0..1..0....3..2..0..3
		

A240274 Number of 4Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

7, 36, 582, 8265, 126286, 2059061, 34514871, 591083808, 10257888481, 179492029479, 3156570684216, 55683928149753, 984159273442563, 17414013354270353, 308343982790239450, 5462057581927992592
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Row 4 of A240271

Examples

			Some solutions for n=4
..3..2..3..3....3..0..2..0....2..3..0..0....3..2..0..2....3..0..0..0
..3..1..2..3....2..3..2..0....2..1..2..3....3..1..2..0....3..2..2..0
..2..3..0..2....3..1..2..0....3..2..2..1....2..1..0..2....2..1..0..2
..3..2..0..0....2..3..2..0....3..2..0..3....3..2..0..2....3..2..2..0
		

A240275 Number of 5Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

10, 72, 2000, 49921, 1363144, 40760821, 1277623744, 41700264862, 1401065174093, 47967535279669, 1662365159922179, 58055815885463615, 2037231165976598098, 71699030982374305133, 2527959942776102405087, 89229063928826842973827
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Row 5 of A240271

Examples

			Some solutions for n=4
..3..2..0..2....3..2..2..0....3..0..0..0....2..0..3..3....3..2..0..3
..3..2..0..0....3..1..2..0....2..3..2..2....2..0..3..3....3..1..2..3
..2..3..0..2....2..3..2..0....3..2..2..2....3..0..2..2....2..1..2..2
..3..2..2..0....3..0..2..2....3..1..2..0....2..3..2..2....3..0..2..0
..2..1..2..2....2..1..0..0....3..2..2..0....3..1..2..0....2..3..2..2
		

A240276 Number of 6Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

15, 170, 8353, 382690, 19210586, 1063706501, 63085436203, 3958922741466, 259024497472292, 17435614748138060
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Row 6 of A240271

Examples

			Some solutions for n=3
..3..2..2....3..2..2....3..2..3....3..2..2....2..3..3....3..2..3....3..2..3
..2..1..2....3..1..2....2..1..1....3..1..1....2..1..2....2..1..1....2..1..2
..3..1..3....2..3..2....3..2..3....2..3..3....3..0..1....3..2..3....3..2..0
..3..2..3....3..0..0....2..3..3....3..1..2....2..3..2....2..3..3....2..1..0
..3..1..1....2..1..0....2..0..0....3..2..2....3..2..2....2..0..0....2..0..3
..2..3..3....3..1..2....2..0..1....2..1..1....2..3..2....2..0..0....3..2..2
		
Showing 1-10 of 10 results.