cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A240279 Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

2, 8, 19, 38, 114, 251, 612, 1656, 3758, 9630, 24258, 57548, 146898, 360946, 880960, 2217967, 5429271, 13419200, 33424298, 82079277, 203571196, 504206276, 1242741927, 3081338174, 7616293969, 18815746878, 46600839533, 115150972966
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Column 2 of A240284

Examples

			Some solutions for n=4
..3..1....3..1....3..3....3..3....3..1....3..3....3..1....3..1....3..1....3..1
..2..0....3..1....2..2....3..2....3..1....3..2....2..2....2..0....3..1....2..0
..2..0....2..1....2..1....2..1....3..2....3..1....2..0....2..1....3..1....2..0
..2..1....3..3....2..1....3..1....2..1....2..1....3..3....3..3....2..2....3..1
		

Formula

Empirical: a(n) = 3*a(n-2) +10*a(n-3) -3*a(n-4) -6*a(n-5) -3*a(n-6) +8*a(n-7) -7*a(n-8) -9*a(n-9) -4*a(n-10) +13*a(n-11) -14*a(n-12) +17*a(n-13) -a(n-15)

A240280 Number of nX3 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

2, 19, 80, 262, 1461, 5443, 24490, 117962, 459193, 2147788, 9481211, 39404594, 181740410, 780110007, 3374455576, 15188622683, 65126163196, 286616870440, 1266986470030, 5476212217332, 24183642014347, 105926526183355
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Column 3 of A240284

Examples

			Some solutions for n=4
..3..3..1....3..1..3....3..3..1....3..1..3....3..3..1....3..3..1....3..1..3
..3..2..1....2..1..2....2..2..2....3..1..2....2..2..0....2..0..0....3..1..0
..3..1..2....2..1..1....2..1..2....2..1..1....2..1..2....2..0..1....2..1..2
..2..1..3....3..3..1....3..3..0....3..3..2....3..1..0....3..3..1....3..3..1
		

A240281 Number of n X 4 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 76, 570, 3457, 33183, 218658, 1851080, 15760838, 110599613, 945852472, 7409236730, 55988117579, 467427537182, 3584402597875, 28182066532013, 228525081390122, 1759513489969607, 14047642078491638, 111675119083235178
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Column 4 of A240284.

Examples

			Some solutions for n=4
..3..1..3..1....3..3..1..1....3..1..3..3....3..1..3..1....3..1..3..1
..2..0..2..0....2..2..2..2....2..0..2..2....2..0..0..0....3..2..0..0
..2..0..0..2....2..0..2..2....2..0..0..2....2..0..0..0....2..0..2..2
..2..1..1..2....2..0..0..0....2..0..0..0....2..0..0..2....3..3..2..0
		

Crossrefs

Cf. A240284.

A240282 Number of nX5 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 181, 2574, 28654, 484146, 5646644, 88953626, 1357879302, 17350066110, 272318368893, 3830297634073, 53008989555669, 804259922741153, 11140838537971196, 160309233474096916, 2355215686029612116
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Column 5 of A240284

Examples

			Some solutions for n=4
..3..1..3..1..3....3..1..3..1..3....3..1..3..1..3....3..1..3..3..1
..2..0..0..2..2....2..0..0..0..2....2..0..0..1..3....3..1..2..0..0
..2..0..2..0..2....2..0..2..2..0....2..0..2..3..1....2..2..2..2..0
..3..1..0..0..2....2..0..0..2..2....2..0..0..0..2....3..3..2..0..0
		

A240283 Number of nX6 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

8, 741, 20764, 443168, 13490093, 281488213, 8199368365, 225885684501, 5291794810655, 154532568331772, 3942966914718387, 100514669722453440, 2799309114801417209, 70561458133827649660, 1875054289432696736342
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Column 6 of A240284

Examples

			Some solutions for n=3
..3..3..1..1..3..1....3..1..3..1..3..3....3..1..3..1..3..3....3..3..1..3..1..1
..3..2..0..0..0..0....2..0..2..2..0..0....3..2..3..2..0..0....2..2..0..2..0..0
..2..2..0..0..3..2....2..0..0..0..0..0....2..2..2..2..0..0....2..0..0..0..1..2
		

A240285 Number of 2 X n 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

2, 8, 19, 76, 181, 741, 1779, 7308, 17561, 72140, 173343, 712043, 1710905, 7027848, 16886555, 69364556, 166669597, 684625413, 1645022411, 6757226212, 16236307329, 66693560300, 160251722711, 658262849419, 1581678277825, 6497028751792
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Examples

			Some solutions for n=4:
..3..1..3..1....3..3..1..3....3..1..3..1....3..1..3..1....3..3..1..3
..2..1..2..0....2..0..2..3....3..1..0..0....3..2..0..0....2..0..2..2
		

Crossrefs

Row 2 of A240284.

Formula

Empirical: a(n) = 12*a(n-2) - 24*a(n-4) + 31*a(n-6) - 16*a(n-8).
Empirical g.f.: x*(1 - x)*(2 + 10*x + 5*x^2 - 15*x^3 - 14*x^4 + 7*x^5 + 8*x^6) / (1 - 12*x^2 + 24*x^4 - 31*x^6 + 16*x^8). - Colin Barker, Oct 27 2018

A240286 Number of 3Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

3, 19, 80, 570, 2574, 20764, 97348, 802835, 3797188, 31467286, 149131302, 1237084277, 5865347475, 48665192186, 230756350987, 1914691579848, 9079103009997, 75334276334445, 357222415759008, 2964076274068268
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Row 3 of A240284

Examples

			Some solutions for n=4
..3..3..1..3....3..1..3..1....3..3..1..1....3..1..3..1....3..3..1..3
..2..0..1..3....3..2..3..2....2..0..0..2....3..1..2..0....3..2..0..3
..2..0..1..2....2..2..3..2....2..0..0..0....3..1..2..0....3..1..2..2
		

Formula

Empirical: a(n) = 63*a(n-2) -1109*a(n-4) +7143*a(n-6) -395*a(n-8) -201246*a(n-10) +762860*a(n-12) +347011*a(n-14) -7366154*a(n-16) +11744674*a(n-18) +3758987*a(n-20) +10095295*a(n-22) -126415852*a(n-24) +204390541*a(n-26) -65238786*a(n-28) -59211883*a(n-30) -114625640*a(n-32) +381020006*a(n-34) -342073760*a(n-36) +16725276*a(n-38) +181283664*a(n-40) -110895680*a(n-42) +16492080*a(n-44) +1175136*a(n-46) +390464*a(n-48) for n>51

A240287 Number of 4Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 38, 262, 3457, 28654, 443168, 3980245, 64782938, 596789376, 9869794598, 91652276224, 1523203607042, 14179800809674, 236017741338558, 2198821491143543, 36615754869208829, 341205510217305667
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Row 4 of A240284

Examples

			Some solutions for n=4
..3..3..1..3....3..1..3..3....3..1..3..3....3..1..3..1....3..1..3..1
..2..2..0..3....2..0..2..0....3..2..3..0....2..0..0..0....3..1..2..0
..2..0..2..2....2..0..0..2....2..2..2..2....2..0..2..0....3..1..2..1
..2..1..3..0....2..1..1..0....3..1..0..0....3..1..0..0....2..2..2..1
		

A240288 Number of 5Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

7, 114, 1461, 33183, 484146, 13490093, 224906182, 6988931041, 124429466670, 4051638112330, 74018226541069, 2452262844599318, 45215487411950078, 1507127744748116582, 27877553829380592951, 931147017328796104053
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Row 5 of A240284

Examples

			Some solutions for n=4
..3..3..1..1....3..3..1..3....3..3..1..3....3..1..3..3....3..1..3..1
..3..2..1..2....2..2..0..0....3..2..0..0....2..2..2..2....3..1..3..1
..2..2..2..2....2..1..2..0....3..1..2..0....2..0..2..2....3..2..3..3
..3..3..0..2....3..3..0..2....2..2..2..2....3..3..0..0....2..0..2..2
..3..2..3..2....2..2..0..0....3..1..2..1....2..2..0..3....2..1..2..0
		

A240289 Number of 6 X n 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

10, 251, 5443, 218658, 5646644, 281488213, 8597299482, 500877279597, 17050417858056, 1080907153540112, 38722390548732389, 2543690845510555315, 92980052380043106702, 6189999145510145997607, 227935320097083755541303
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Row 6 of A240284.

Examples

			Some solutions for n=3
..3..1..3....3..1..3....3..1..3....3..1..3....3..1..3....3..1..3....3..1..3
..3..1..3....3..1..2....3..1..3....3..2..3....3..1..3....2..0..2....2..0..0
..3..1..3....2..1..1....2..1..3....3..2..3....3..2..3....2..1..1....2..1..2
..2..2..2....3..3..1....3..3..2....2..0..0....2..1..2....3..3..1....3..1..2
..2..1..3....3..1..2....2..2..0....3..1..2....3..1..2....2..1..3....3..2..0
..2..1..1....2..2..2....2..1..3....2..2..2....3..2..1....3..1..2....2..1..3
		

Crossrefs

Cf. A240284.
Showing 1-10 of 10 results.