cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240304 Number of partitions of n such that (maximal multiplicity of parts) > (multiplicity of the least part).

This page as a plain text file.
%I A240304 #6 Apr 12 2014 16:25:35
%S A240304 0,0,0,0,0,1,0,2,3,4,5,12,11,21,27,37,49,71,87,124,153,204,260,344,
%T A240304 421,550,685,867,1076,1360,1660,2081,2544,3145,3831,4706,5692,6958,
%U A240304 8395,10171,12224,14761,17645,21204,25281,30207,35914,42760,50618,60057,70914
%N A240304 Number of partitions of n such that (maximal multiplicity of parts) > (multiplicity of the least part).
%F A240304 a(n) + A240303(n) = A000041(n) for n >= 1.
%e A240304 a(7) counts these 2 partitions of 7: 331, 2221.
%t A240304 z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *)
%t A240304 Table[Count[f[n], p_ /; m[p] == Count[p, Min[p]]], {n, 0, z}] (* A240303 *)
%t A240304 Table[Count[f[n], p_ /; m[p] > Count[p, Min[p]]], {n, 0, z}] (* A240304 *)
%Y A240304 Cf. A240303, A000041, A171979.
%K A240304 nonn,easy
%O A240304 0,8
%A A240304 _Clark Kimberling_, Apr 04 2014