A240305 Number of partitions p of n such that (maximal multiplicity of the parts of p) < (number of distinct parts of p).
1, 0, 0, 1, 1, 2, 3, 5, 7, 12, 14, 21, 29, 38, 50, 70, 90, 117, 156, 196, 253, 324, 411, 514, 650, 809, 1015, 1259, 1555, 1917, 2365, 2898, 3536, 4318, 5248, 6365, 7691, 9297, 11180, 13446, 16115, 19296, 23019, 27474, 32653, 38838, 46002, 54511, 64371, 76012
Offset: 0
Examples
a(6) counts these 3 partitions: 51, 42, 321.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *); d[p_] := d[p] = Length[DeleteDuplicates[p]] (* number of distinct terms *) t1 = Table[Count[f[n], p_ /; m[p] < d[p]], {n, 0, z}] (* A240305 *) t2 = Table[Count[f[n], p_ /; m[p] <= d[p]], {n, 0, z}] (* A240306 *) t3 = Table[Count[f[n], p_ /; m[p] == d[p]], {n, 0, z}] (* A239964 *) t4 = Table[Count[f[n], p_ /; m[p] >= d[p]], {n, 0, z}] (* A240308 *) t5 = Table[Count[f[n], p_ /; m[p] > d[p]], {n, 0, z}] (* A240309 *)