This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240306 #5 Apr 14 2014 11:09:23 %S A240306 1,1,1,2,3,5,6,9,13,17,25,33,44,59,76,100,131,169,212,278,352,442,555, %T A240306 703,871,1088,1342,1664,2046,2517,3064,3758,4574,5548,6718,8119,9797, %U A240306 11784,14150,16935,20263,24179,28798,34237,40677,48122,57008,67291,79400 %N A240306 Number of partitions p of n such that (maximal multiplicity of the parts of p) <= (number of distinct parts of p). %F A240306 a(n) = A240305(n) + A239964(n) for n >= 0. %F A240306 a(n) + A240308(n) = A000041(n) for n >= 0. %e A240306 a(6) counts these 6 partitions: 6, 51, 42, 411, 321, 2211. %t A240306 z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *); d[p_] := d[p] = Length[DeleteDuplicates[p]] (* number of distinct terms *) %t A240306 t1 = Table[Count[f[n], p_ /; m[p] < d[p]], {n, 0, z}] (* A240305 *) %t A240306 t2 = Table[Count[f[n], p_ /; m[p] <= d[p]], {n, 0, z}] (* A240306 *) %t A240306 t3 = Table[Count[f[n], p_ /; m[p] == d[p]], {n, 0, z}] (* A239964 *) %t A240306 t4 = Table[Count[f[n], p_ /; m[p] >= d[p]], {n, 0, z}] (* A240308 *) %t A240306 t5 = Table[Count[f[n], p_ /; m[p] > d[p]], {n, 0, z}] (* A240309 *) %Y A240306 Cf. A240305, A239964, A240308, A240309, A000041. %K A240306 nonn,easy %O A240306 0,4 %A A240306 _Clark Kimberling_, Apr 05 2014