This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240308 #4 Apr 14 2014 11:09:51 %S A240308 0,1,2,2,4,5,8,10,15,18,28,35,48,63,85,106,141,180,229,294,374,468, %T A240308 591,741,925,1149,1421,1751,2163,2648,3239,3944,4813,5825,7062,8518, %U A240308 10286,12340,14835,17739,21223,25287,30155,35787,42522,50296,59556,70243,82902 %N A240308 Number of partitions p of n such that (maximal multiplicity of the parts of p) >= (number of distinct parts of p). %F A240308 a(n) = A239964(n) + A240308(n) for n >= 0. %F A240308 a(n) + A240305(n) = A000041(n) for n >= 0. %e A240308 a(6) counts these 8 partitions: 6, 411, 33, 3111, 222, 2211, 21111, 111111. %t A240308 z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *); d[p_] := d[p] = Length[DeleteDuplicates[p]] (* number of distinct terms *) %t A240308 t1 = Table[Count[f[n], p_ /; m[p] < d[p]], {n, 0, z}] (* A240305 *) %t A240308 t2 = Table[Count[f[n], p_ /; m[p] <= d[p]], {n, 0, z}] (* A240306 *) %t A240308 t3 = Table[Count[f[n], p_ /; m[p] == d[p]], {n, 0, z}] (* A239964 *) %t A240308 t4 = Table[Count[f[n], p_ /; m[p] >= d[p]], {n, 0, z}] (* A240308 *) %t A240308 t5 = Table[Count[f[n], p_ /; m[p] > d[p]], {n, 0, z}] (* A240309 *) %Y A240308 Cf. A240305, A240306, A239964, A240309, A000041. %K A240308 nonn,easy %O A240308 0,3 %A A240308 _Clark Kimberling_, Apr 05 2014