A240309 Number of partitions p of n such that (maximal multiplicity of the parts of p) > (number of distinct parts of p).
0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 59, 76, 100, 128, 173, 212, 275, 350, 447, 552, 704, 870, 1094, 1346, 1672, 2048, 2540, 3084, 3775, 4595, 5592, 6764, 8180, 9853, 11865, 14250, 17075, 20404, 24376, 29024, 34498, 41012, 48550, 57463, 67873
Offset: 0
Examples
a(6) counts these 5 partitions: 33, 3111, 222, 21111, 111111.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *); d[p_] := d[p] = Length[DeleteDuplicates[p]] (* number of distinct terms *) t1 = Table[Count[f[n], p_ /; m[p] < d[p]], {n, 0, z}] (* A240305 *) t2 = Table[Count[f[n], p_ /; m[p] <= d[p]], {n, 0, z}] (* A240306 *) t3 = Table[Count[f[n], p_ /; m[p] == d[p]], {n, 0, z}] (* A239964 *) t4 = Table[Count[f[n], p_ /; m[p] >= d[p]], {n, 0, z}] (* A240308 *) t5 = Table[Count[f[n], p_ /; m[p] > d[p]], {n, 0, z}] (* A240309 *)