A240310 Number of partitions p of n such that (maximal multiplicity of the parts of p) < (maximal part of p).
0, 0, 1, 2, 2, 4, 6, 10, 14, 19, 27, 37, 50, 69, 92, 123, 161, 213, 273, 355, 453, 580, 734, 931, 1168, 1468, 1830, 2279, 2821, 3490, 4292, 5275, 6450, 7878, 9584, 11645, 14091, 17039, 20529, 24703, 29640, 35520, 42447, 50669, 60329, 71743, 85131, 100892
Offset: 0
Examples
a(6) counts these 6 partitions: 6, 51, 42, 411, 33, 321.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *) Table[Count[f[n], p_ /; m[p] < Max[p]], {n, 0, z}] (* A240310 *) Table[Count[f[n], p_ /; m[p] <= Max[p]], {n, 0, z}] (* A240311 *) Table[Count[f[n], p_ /; m[p] == Max[p]], {n, 0, z}] (* A240312 *) Table[Count[f[n], p_ /; m[p] >= Max[p]], {n, 0, z}] (* A240313 *) Table[Count[f[n], p_ /; m[p] > Max[p]], {n, 0, z}] (* A240314*)