A240311 Number of partitions p of n such that (maximal multiplicity of the parts of p) <= (maximal part of p).
1, 1, 1, 2, 4, 5, 8, 10, 16, 22, 32, 42, 59, 76, 103, 134, 179, 228, 301, 382, 494, 623, 796, 995, 1259, 1564, 1957, 2419, 3005, 3690, 4552, 5562, 6815, 8288, 10095, 12218, 14808, 17842, 21514, 25823, 30999, 37058, 44306, 52775, 62851, 74613, 88538, 104764
Offset: 0
Examples
a(6) counts these 8 partitions: 6, 51, 42, 411, 33, 3111, 321, 2211.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *) Table[Count[f[n], p_ /; m[p] < Max[p]], {n, 0, z}] (* A240310 *) Table[Count[f[n], p_ /; m[p] <= Max[p]], {n, 0, z}] (* A240311 *) Table[Count[f[n], p_ /; m[p] == Max[p]], {n, 0, z}] (* A240312 *) Table[Count[f[n], p_ /; m[p] >= Max[p]], {n, 0, z}] (* A240313 *) Table[Count[f[n], p_ /; m[p] > Max[p]], {n, 0, z}] (* A240314 *)