A240312 Number of partitions p of n such that (maximal multiplicity of the parts of p) = (maximal part of p).
1, 1, 0, 0, 2, 1, 2, 0, 2, 3, 5, 5, 9, 7, 11, 11, 18, 15, 28, 27, 41, 43, 62, 64, 91, 96, 127, 140, 184, 200, 260, 287, 365, 410, 511, 573, 717, 803, 985, 1120, 1359, 1538, 1859, 2106, 2522, 2870, 3407, 3872, 4586, 5207, 6128, 6976, 8167, 9284, 10844, 12321
Offset: 0
Examples
a(6) counts these 2 partitions: 3111, 2211.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *) Table[Count[f[n], p_ /; m[p] < Max[p]], {n, 0, z}] (* A240310 *) Table[Count[f[n], p_ /; m[p] <= Max[p]], {n, 0, z}] (* A240311 *) Table[Count[f[n], p_ /; m[p] == Max[p]], {n, 0, z}] (* A240312 *) Table[Count[f[n], p_ /; m[p] >= Max[p]], {n, 0, z}] (* A240313 *) Table[Count[f[n], p_ /; m[p] > Max[p]], {n, 0, z}] (* A240314 *)