A240313 Number of partitions p of n such that (maximal multiplicity of the parts of p) >= (maximal part of p).
1, 1, 1, 1, 3, 3, 5, 5, 8, 11, 15, 19, 27, 32, 43, 53, 70, 84, 112, 135, 174, 212, 268, 324, 407, 490, 606, 731, 897, 1075, 1312, 1567, 1899, 2265, 2726, 3238, 3886, 4598, 5486, 6482, 7698, 9063, 10727, 12592, 14846, 17391, 20427, 23862, 27952, 32568, 38033
Offset: 0
Examples
a(6) counts these 5 partitions: 3111, 222, 2211, 21111, 111111.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *) Table[Count[f[n], p_ /; m[p] < Max[p]], {n, 0, z}] (* A240310 *) Table[Count[f[n], p_ /; m[p] <= Max[p]], {n, 0, z}] (* A240311 *) Table[Count[f[n], p_ /; m[p] == Max[p]], {n, 0, z}] (* A240312 *) Table[Count[f[n], p_ /; m[p] >= Max[p]], {n, 0, z}] (* A240313 *) Table[Count[f[n], p_ /; m[p] > Max[p]], {n, 0, z}] (* A240314 *)