A240322 Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.
2, 5, 17, 37, 80, 213, 443, 1028, 2511, 5370, 12742, 29737, 65687, 155443, 355668, 803696, 1883007, 4285398, 9805203, 22760901, 51853646, 119272787, 275149593, 628629688, 1447871151, 3328934761, 7625189365, 17555754237, 40308328871
Offset: 1
Keywords
Examples
Some solutions for n=4: ..3..2....3..2....3..2....3..2....3..2....2..3....2..3....2..3....2..3....2..3 ..2..1....2..1....2..3....2..1....2..1....3..2....3..0....3..0....3..0....3..0 ..3..1....2..0....3..2....3..2....3..0....2..3....3..2....3..1....2..1....3..1 ..2..1....2..0....2..1....3..2....3..2....2..1....3..2....3..1....2..1....2..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A240327.
Formula
Empirical: a(n) = 2*a(n-2) + 10*a(n-3) - a(n-4) - 5*a(n-5) - 15*a(n-6) + a(n-7) + 4*a(n-8) + 2*a(n-9) + 10*a(n-10) + 5*a(n-11) - 6*a(n-13) for n>14.
Empirical g.f.: x*(2 + 5*x + 13*x^2 + 7*x^3 - 2*x^4 - 16*x^5 - 15*x^6 - 3*x^7 + 2*x^8 + 11*x^9 + 13*x^10 + 3*x^11 - 3*x^12 - 4*x^13) / (1 - 2*x^2 - 10*x^3 + x^4 + 5*x^5 + 15*x^6 - x^7 - 4*x^8 - 2*x^9 - 10*x^10 - 5*x^11 + 6*x^13). - Colin Barker, Oct 27 2018