cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240358 Decimal expansion of 'c', a constant linked to an estimate of density of zeros of an entire function of exponential type.

This page as a plain text file.
%I A240358 #16 Jun 18 2025 16:23:03
%S A240358 1,5,0,8,8,7,9,5,6,1,5,3,8,3,1,9,9,2,8,9,0,9,8,8,4,4,8,8,1,6,0,5,7,8,
%T A240358 5,7,3,6,9,4,2,7,8,5,8,9,0,4,7,7,6,9,1,9,1,4,7,2,0,7,8,3,5,9,7,2,6,4,
%U A240358 6,0,5,7,6,5,5,7,9,9,9,2,4,5,8,9,2,6,2,9,3,3,6,7,3,6,1,9,9,4,4,1
%N A240358 Decimal expansion of 'c', a constant linked to an estimate of density of zeros of an entire function of exponential type.
%H A240358 Alexandre Eremenko and Peter Yuditskii, <a href="http://www.math.purdue.edu/~eremenko/dvi/petiadens3.pdf">An extremal problem for a class of entire functions</a>
%F A240358 Solution to log(c + sqrt(c^2 + 1)) = sqrt(1 + 1/c^2).
%F A240358 Equals 1/A033259. - _Robert FERREOL_, Jun 16 2025
%e A240358 1.508879561538319928909884488160578573694278589...
%t A240358 FindRoot[Log[c + Sqrt[c^2 + 1]] == Sqrt[1 + 1/c^2], {c, 3/2}, WorkingPrecision -> 100][[1, 2]] // RealDigits[#, 10, 100]& // First
%Y A240358 Cf. A033259.
%K A240358 nonn,cons
%O A240358 1,2
%A A240358 _Jean-François Alcover_, Apr 04 2014