cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A240371 Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

3, 11, 21, 67, 155, 353, 998, 2256, 5639, 14624, 34169, 87040, 216484, 522354, 1320708, 3242252, 7968236, 19928605, 48905783, 121065218, 300575628, 739878493, 1834210821, 4538220894, 11200994822, 27751051195, 68588966317, 169541251841
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 2 of A240376

Examples

			Some solutions for n=4
..3..2....3..3....3..3....3..2....3..3....3..2....3..3....2..2....3..2....3..2
..2..0....3..2....3..2....3..2....3..1....2..1....3..1....2..1....3..1....3..1
..3..1....2..0....2..0....2..0....2..2....3..1....2..0....3..1....2..2....2..2
..3..1....3..1....3..3....3..3....2..1....2..2....2..0....3..2....2..0....2..1
		

Formula

Empirical: a(n) = 3*a(n-2) +10*a(n-3) -3*a(n-4) -6*a(n-5) -3*a(n-6) +8*a(n-7) -7*a(n-8) -9*a(n-9) -4*a(n-10) +13*a(n-11) -14*a(n-12) +17*a(n-13) -a(n-15) for n>17

A240372 Number of nX3 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 21, 75, 450, 1729, 7233, 36148, 139855, 645733, 2919837, 11900426, 55182313, 238587617, 1020077489, 4627613220, 19831142375, 86874931360, 386104242606, 1664229710205, 7344843690603, 32253553194721, 140150173949016
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 3 of A240376

Examples

			Some solutions for n=4
..3..2..3....3..2..3....3..2..3....3..2..3....2..2..2....3..3..2....3..3..2
..3..2..1....3..2..1....2..0..1....3..2..1....2..0..0....2..2..2....3..2..0
..2..0..2....2..2..3....3..1..2....2..0..2....3..1..0....3..1..3....2..0..0
..3..3..1....2..0..2....2..1..2....3..3..0....2..2..0....2..1..1....3..3..0
		

A240373 Number of nX4 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

7, 67, 450, 5161, 36398, 271764, 2492182, 17380978, 143489019, 1182292032, 8603707764, 72258762282, 564807764665, 4330558939711, 35641259507701, 274748439605812, 2168553682544862, 17443667551284635, 135153953683819534
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 4 of A240376

Examples

			Some solutions for n=4
..3..3..2..2....3..2..3..3....3..3..2..3....2..2..3..2....2..2..2..2
..3..1..2..1....3..1..3..1....2..2..0..3....2..1..3..0....2..1..1..0
..2..2..3..2....2..1..1..0....3..1..0..2....3..3..0..0....3..1..2..1
..3..1..3..1....3..3..2..3....2..2..2..0....2..0..0..1....3..2..1..2
		

A240374 Number of nX5 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

10, 155, 1729, 36398, 486179, 6436979, 110122847, 1403151574, 20729739995, 314460587672, 4129507235966, 62894928616313, 899396661401712, 12459403539502242, 186844736024568319, 2621133895463593999
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 5 of A240376

Examples

			Some solutions for n=4
..3..3..2..3..3....3..3..2..3..3....2..2..3..2..3....3..3..2..3..3
..2..2..2..1..1....2..2..0..3..1....2..1..3..0..1....3..1..0..3..1
..3..1..0..0..0....3..1..0..0..3....3..1..0..0..2....2..2..2..2..0
..2..2..0..3..2....2..1..1..2..2....3..2..1..2..2....3..1..2..0..2
		

A240375 Number of n X 6 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

15, 353, 7233, 271764, 6436979, 169838571, 5145071133, 121626491919, 3384817934297, 91027175836503, 2222522848709145, 62148514553083420, 1602155697723521517, 41356217735570589779, 1131174318003611087054
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 6 of A240376.

Examples

			Some solutions for n=3:
..3..2..3..2..2..2....3..3..2..3..3..2....2..2..3..2..3..3....2..2..3..2..3..2
..3..2..3..2..0..1....3..1..2..1..1..2....2..0..1..2..1..1....2..0..1..2..1..2
..2..2..0..3..2..3....2..2..3..2..0..3....2..1..3..2..0..0....3..1..3..2..3..0
		

Crossrefs

Cf. A240376.
Showing 1-5 of 5 results.