cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A240377 Number of nX2 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

2, 10, 44, 148, 636, 2430, 9648, 37946, 149336, 588102, 2315310, 9114874, 35884720, 141278356, 556180846, 2189677956, 8620404070, 33937808062, 133609043358, 526004415056, 2070820187636, 8152588623474, 32095829706144, 126357695287702
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 2 of A240381

Examples

			Some solutions for n=4
..1..3....1..3....1..3....3..1....1..3....3..1....1..3....3..1....3..1....3..1
..2..0....1..0....1..0....2..0....1..2....3..0....1..2....3..0....2..0....3..2
..2..3....2..3....3..2....1..0....3..0....3..1....1..0....2..0....1..0....1..0
..2..3....3..1....2..0....3..2....1..0....1..2....3..2....1..0....3..0....3..0
		

Formula

Empirical: a(n) = 2*a(n-1) +11*a(n-2) -a(n-3) -39*a(n-4) -40*a(n-5) +3*a(n-6) +13*a(n-7) +64*a(n-8) +162*a(n-9) -220*a(n-10) +122*a(n-11) -38*a(n-12) -82*a(n-13) +60*a(n-14) for n>15

A240378 Number of nX3 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 38, 330, 2066, 16994, 116030, 884792, 6273952, 46648918, 335571098, 2468592214, 17883911418, 130889355348, 951392168734, 6947056359884, 50571064277718, 368890128041664, 2687133002363550, 19592211767424272, 142760104420636614
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 3 of A240381

Examples

			Some solutions for n=4
..1..3..1....3..1..1....3..1..1....3..1..3....3..1..3....1..3..3....1..3..1
..1..3..1....3..2..2....2..1..0....3..2..2....3..0..0....1..0..0....1..2..0
..1..2..2....1..2..0....1..3..1....3..2..2....3..2..2....1..0..0....3..0..2
..2..0..0....3..0..2....1..0..3....2..0..3....1..2..2....3..2..3....1..0..2
		

A240379 Number of nX4 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 90, 1494, 17550, 281186, 3502886, 52375114, 672652728, 9771038498, 127878632630, 1824118827422, 24208448126400, 341050301141278, 4570912937279916, 63851040871974536, 861645931638541286
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 4 of A240381

Examples

			Some solutions for n=4
..3..1..1..3....1..3..3..1....3..1..1..3....3..1..1..3....1..3..3..1
..3..0..2..3....1..0..0..0....3..2..2..0....3..0..2..0....1..2..0..0
..1..0..2..1....1..3..3..1....2..0..3..2....2..0..0..0....3..0..0..0
..3..0..2..2....3..2..3..3....1..3..2..1....1..0..0..0....1..2..0..1
		

A240380 Number of nX5 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

8, 366, 12234, 279886, 8802558, 207932244, 6169009514, 148090588518, 4275011910288, 104011573900208, 2947730099151186, 72619839200406266, 2029464330510629772, 50540971131672863686, 1396965866163201451210
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 5 of A240381

Examples

			Some solutions for n=3
..1..3..3..1..1....1..3..3..1..3....3..1..1..3..3....1..3..3..1..1
..1..2..2..0..2....1..2..0..2..2....3..0..0..0..0....1..0..0..2..0
..1..0..2..2..0....3..0..2..2..0....2..0..0..3..3....1..0..2..2..0
		

A240382 Number of 2 X n 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 10, 38, 90, 366, 878, 3606, 8666, 35602, 85550, 351418, 844394, 3468498, 8334126, 34233910, 82257450, 337887294, 811877790, 3334934438, 8013202282, 32915673442, 79089995358, 324876418346, 780615181818, 3206517628418, 7704641519326
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Examples

			Some solutions for n=4:
..3..1..3..1....3..1..3..1....1..3..1..3....1..3..1..3....3..1..3..1
..3..2..2..2....2..0..0..1....1..3..2..3....2..3..2..0....3..2..3..2
		

Crossrefs

Row 2 of A240381.

Formula

Empirical: a(n) = 12*a(n-2) - 24*a(n-4) + 31*a(n-6) - 16*a(n-8).
Empirical g.f.: 2*x*(1 - x)*(2 + 7*x + 2*x^2 - 13*x^3 - 10*x^4 + 9*x^5 + 10*x^6) / (1 - 12*x^2 + 24*x^4 - 31*x^6 + 16*x^8). - Colin Barker, Oct 27 2018

A240383 Number of 3Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

10, 44, 330, 1494, 12234, 57722, 477574, 2261528, 18754102, 88905970, 737608314, 3497413372, 29019200234, 137602592286, 1141759996940, 5414024874816, 44923190320370, 213018323989062, 1767534025443302, 8381357456668862
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Row 3 of A240381

Examples

			Some solutions for n=4
..3..1..3..1....1..3..3..1....3..1..3..1....3..1..1..3....3..1..1..3
..3..1..3..2....1..2..2..2....3..0..0..0....2..1..2..0....3..2..0..0
..3..2..2..2....1..0..2..2....2..1..0..0....2..1..2..0....1..0..2..0
		

Formula

Empirical: a(n) = 63*a(n-2) -1109*a(n-4) +7143*a(n-6) -395*a(n-8) -201246*a(n-10) +762860*a(n-12) +347011*a(n-14) -7366154*a(n-16) +11744674*a(n-18) +3758987*a(n-20) +10095295*a(n-22) -126415852*a(n-24) +204390541*a(n-26) -65238786*a(n-28) -59211883*a(n-30) -114625640*a(n-32) +381020006*a(n-34) -342073760*a(n-36) +16725276*a(n-38) +181283664*a(n-40) -110895680*a(n-42) +16492080*a(n-44) +1175136*a(n-46) +390464*a(n-48) for n>50

A240384 Number of 4Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

22, 148, 2066, 17550, 279886, 2545618, 41758418, 386198428, 6402184552, 59522550860, 989951909274, 9219059734138, 153482631485554, 1430059273612710, 23815641376583332, 221934887827387424, 3696371174369294160
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Row 4 of A240381

Examples

			Some solutions for n=4
..1..3..1..3....3..1..3..1....1..3..3..1....1..3..3..1....3..1..1..3
..1..0..2..2....2..1..2..0....1..2..2..2....1..2..2..2....3..0..0..0
..3..0..0..2....2..3..2..1....3..0..2..0....2..0..0..0....3..0..2..0
..1..2..0..2....2..1..2..3....2..0..3..3....3..0..0..2....1..0..0..3
		

A240385 Number of 5Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

50, 636, 16994, 281186, 8802558, 157432290, 5145703760, 94223623272, 3126551352694, 57696575110386, 1924215336561216, 35602912537978540, 1189410681468072730, 22026730385148887712, 736286341896022349010
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Row 5 of A240381

Examples

			Some solutions for n=3
..3..1..3....3..1..1....3..1..1....3..1..3....3..1..1....3..1..3....3..1..1
..3..0..0....3..0..2....3..0..0....3..2..2....2..0..0....3..2..0....2..0..0
..2..1..2....1..2..0....3..2..2....2..0..0....1..0..2....1..0..3....2..1..1
..1..3..2....3..0..0....1..0..2....1..0..2....3..0..0....3..0..2....2..3..2
..2..0..0....1..0..2....2..0..1....2..0..3....1..2..2....3..2..3....2..0..3
		

A240386 Number of 6Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

114, 2430, 116030, 3502886, 207932244, 7149227810, 457988195982, 16510130379104, 1089482776890120, 39926182074801154, 2662563290796445766, 98136363869645133966, 6568593444605962737250, 242588570864262965105562
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Row 6 of A240381

Examples

			Some solutions for n=3
..3..1..3....1..3..1....1..3..1....3..1..3....1..3..1....3..1..3....1..3..1
..3..1..2....1..0..2....2..0..0....3..0..2....1..0..2....2..0..3....1..2..0
..1..2..1....1..0..0....2..3..0....3..1..2....2..0..3....2..1..1....1..2..0
..2..3..2....2..0..3....2..3..2....2..1..2....1..3..2....2..3..0....2..3..0
..1..3..3....1..0..2....3..1..2....2..3..2....2..3..0....1..0..3....1..3..2
..1..3..2....3..0..0....1..2..1....1..3..2....2..0..3....1..0..3....3..2..3
		
Showing 1-9 of 9 results.