cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A240401 Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

2, 5, 14, 24, 77, 182, 397, 1164, 2626, 6439, 17045, 39465, 100175, 251538, 602316, 1525842, 3756635, 9193532, 23052218, 56571408, 139814332, 347712483, 855278021, 2119654735, 5248572774, 12946151193, 32079791328, 79306295913, 195965663917
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 2 of A240406

Examples

			Some solutions for n=4
..2..1....2..2....2..2....2..1....2..1....2..1....2..2....2..1....2..1....2..2
..3..3....2..0....2..0....2..1....3..3....2..1....3..3....3..3....3..3....3..3
..3..2....2..0....2..0....2..0....2..0....2..0....3..2....3..2....2..1....3..1
..2..2....2..0....3..3....2..0....3..1....3..3....2..1....2..0....3..1....2..0
		

Formula

Empirical: a(n) = 3*a(n-2) +10*a(n-3) -3*a(n-4) -6*a(n-5) -3*a(n-6) +8*a(n-7) -7*a(n-8) -9*a(n-9) -4*a(n-10) +13*a(n-11) -14*a(n-12) +17*a(n-13) -a(n-15)

A240402 Number of nX3 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

3, 14, 77, 235, 1381, 5566, 21413, 114951, 447479, 1942846, 9296148, 37136986, 169442132, 756650294, 3157572233, 14387587626, 62384424058, 269023025478, 1206596042127, 5204663585354, 22811833314490, 100879086151468
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 3 of A240406

Examples

			Some solutions for n=4
..2..1..1....2..1..1....2..2..2....2..1..1....2..2..2....2..1..1....2..2..2
..3..1..2....3..1..3....3..3..0....3..1..2....3..3..0....3..1..2....3..3..0
..2..0..1....2..0..0....3..1..3....3..2..0....2..2..0....2..0..0....3..1..3
..3..3..0....3..3..0....2..2..2....2..0..0....3..3..0....3..3..1....2..0..2
		

A240403 Number of nX4 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 24, 235, 1304, 13648, 98837, 692520, 6686074, 47001423, 368795251, 3172886576, 22843492846, 188803534301, 1516806583206, 11402126592178, 94073248811059, 733120766691045, 5706868084005386, 46267999865467117, 358824411389642466
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 4 of A240406

Examples

			Some solutions for n=4
..2..1..1..2....2..1..2..1....2..1..1..2....2..1..1..2....2..1..2..1
..2..1..2..3....3..1..2..1....2..1..2..0....3..3..2..2....3..3..2..3
..2..0..0..2....3..2..1..2....2..0..0..2....3..2..3..2....2..2..2..2
..3..3..0..0....2..1..2..1....2..0..1..1....2..0..0..2....3..3..0..0
		

A240404 Number of nX5 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

7, 77, 1381, 13648, 257243, 3366314, 43820839, 766539340, 9754760605, 139442821024, 2170660872648, 28425049610123, 428335838522441, 6234809732594859, 85273887883266129, 1280632016847475497
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 5 of A240406

Examples

			Some solutions for n=4
..2..1..1..2..1....2..1..2..1..1....2..1..2..1..1....2..1..1..2..1
..3..1..2..2..3....3..1..3..3..2....3..1..2..1..2....2..1..3..0..1
..3..2..0..0..0....3..2..1..1..3....3..2..0..0..1....2..0..2..3..3
..2..0..0..0..1....2..0..2..2..2....2..0..0..0..0....2..0..0..2..2
		

A240405 Number of nX6 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

10, 182, 5566, 98837, 3366314, 80283637, 1935005419, 62076655091, 1450984782112, 37906848226235, 1081004222746562, 25964332544993478, 717853781860370092, 19141131451457166560, 479535244327439253477, 13234379418730869182392
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 6 of A240406

Examples

			Some solutions for n=4
..2..1..2..1..1..2....2..1..1..2..1..2....2..1..1..2..2..2....2..1..2..1..2..2
..3..3..0..1..2..0....2..1..3..0..1..2....3..3..2..2..0..0....3..1..2..1..2..0
..2..0..0..2..0..0....2..0..0..2..2..1....2..1..3..2..2..0....2..0..0..0..2..0
..3..1..0..2..0..0....2..0..1..2..0..1....3..1..2..2..0..0....3..3..0..0..2..2
		
Showing 1-5 of 5 results.