cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A240407 Number of nX2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

2, 10, 33, 139, 529, 2105, 8258, 32480, 127944, 503372, 1982058, 7801697, 30716039, 120917541, 476048890, 1874110143, 7378197850, 29046994153, 114354774523, 450201581068, 1772392670851, 6977710726893, 27470462435959, 108148134784975
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 2 of A240412

Examples

			Some solutions for n=4
..2..3....2..3....2..3....3..2....3..2....2..3....3..2....3..2....2..3....3..2
..2..3....2..3....2..3....3..0....1..0....2..3....1..0....2..1....1..3....3..1
..2..0....3..1....3..1....1..0....2..0....3..0....3..0....3..1....3..2....1..2
..2..1....1..2....3..1....1..2....2..0....2..1....1..0....3..0....2..0....1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +11*a(n-2) -a(n-3) -39*a(n-4) -40*a(n-5) +3*a(n-6) +13*a(n-7) +64*a(n-8) +162*a(n-9) -220*a(n-10) +122*a(n-11) -38*a(n-12) -82*a(n-13) +60*a(n-14)

A240408 Number of nX3 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 32, 202, 1526, 10749, 79090, 573490, 4185321, 30488162, 222232658, 1619848067, 11805053329, 86050232733, 627116919124, 4571009728681, 33313730895602, 242812260697701, 1769667060944824, 12898232020096920, 94006154577642335
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 3 of A240412

Examples

			Some solutions for n=4
..3..2..3....2..3..2....2..3..3....2..3..2....3..2..2....2..3..3....3..2..2
..3..1..3....2..3..2....1..3..1....2..1..0....3..2..0....2..3..2....1..2..0
..1..2..2....3..0..2....3..0..0....2..0..1....1..0..2....3..1..3....2..0..0
..2..3..0....2..1..1....2..0..0....1..0..3....1..2..0....3..1..2....2..3..2
		

A240409 Number of nX4 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

6, 80, 846, 11670, 148536, 2051450, 27295809, 377924479, 5090700587, 70407569019, 954551839061, 13174232753505, 179288052424091, 2469879998025684, 33692295233425277, 463482286724987999, 6332258123206034509
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 4 of A240412

Examples

			Some solutions for n=4
..3..2..2..2....3..2..3..2....2..3..2..2....3..2..3..3....3..2..3..2
..1..2..1..1....3..0..1..1....2..3..2..1....3..0..1..1....3..2..3..2
..3..2..2..2....1..2..0..1....3..0..2..2....1..2..2..0....1..0..0..0
..3..0..0..0....1..0..0..0....1..0..0..0....2..3..0..2....3..0..2..0
		

A240410 Number of nX5 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

8, 162, 3035, 74655, 1765436, 45245148, 1123774316, 29595088887, 749274246946, 19914152854965, 509962303902956, 13581165239873235, 350176977524708743, 9321339280823558587, 241406266383306613035, 6417224632827750349585
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 5 of A240412

Examples

			Some solutions for n=4
..2..3..3..2..3....2..3..2..2..2....2..3..3..3..2....3..2..2..2..2
..2..3..2..0..1....2..3..0..0..0....2..3..2..2..2....3..2..0..0..0
..2..0..3..0..0....2..1..2..0..0....3..0..0..0..0....1..0..0..0..0
..2..0..0..1..2....1..3..2..1..2....2..0..3..0..3....1..3..1..2..0
		

A240413 Number of 2Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

5, 10, 32, 80, 162, 493, 1109, 2656, 7235, 16492, 41839, 106203, 251488, 640167, 1579481, 3845121, 9681356, 23735901, 58568055, 145990039, 358605440, 888720845, 2202562818, 5427876319, 13455220186, 33269176662, 82172839773, 203518046217
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Row 2 of A240412

Examples

			Some solutions for n=4
..3..2..3..3....2..3..3..2....3..2..3..2....3..2..2..2....2..3..3..3
..1..0..3..1....2..1..2..0....3..0..1..2....3..0..0..0....2..1..1..2
		

Formula

Empirical: a(n) = 3*a(n-2) +10*a(n-3) -3*a(n-4) -6*a(n-5) -3*a(n-6) +8*a(n-7) -7*a(n-8) -9*a(n-9) -4*a(n-10) +13*a(n-11) -14*a(n-12) +17*a(n-13) -a(n-15) for n>16

A240414 Number of 3Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

11, 33, 202, 846, 3035, 17075, 65790, 283052, 1383887, 5430572, 24942550, 111942189, 462444973, 2123240962, 9194726059, 39505113112, 178049613558, 765870935841, 3356043819951, 14873017976807, 64294462854133
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Row 3 of A240412

Examples

			Some solutions for n=4
..2..3..3..2....3..2..3..2....2..3..2..2....3..2..3..3....3..2..3..2
..1..3..1..2....2..0..3..2....2..1..0..0....2..0..1..1....1..2..1..2
..2..0..3..2....1..0..0..3....2..3..2..2....1..0..0..0....2..3..2..0
		

A240415 Number of 4Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

25, 139, 1526, 11670, 74655, 773196, 5429095, 41264901, 368615027, 2585037182, 21489185687, 174817614437, 1291058701632, 10769864002354, 83962833112352, 648485033420957, 5301967970926934, 40960040109260355, 323977574986307633
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Row 4 of A240412

Examples

			Some solutions for n=4
..3..2..2..2....2..3..2..2....2..3..3..3....3..2..3..2....2..3..2..2
..2..1..0..0....2..3..2..0....2..1..2..2....1..2..1..2....2..1..0..0
..3..1..2..0....2..1..2..0....3..0..1..3....2..0..3..2....3..0..1..1
..3..2..0..0....1..3..1..2....1..2..1..3....1..0..3..1....1..0..3..1
		

A240416 Number of 5Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

57, 529, 10749, 148536, 1765436, 33373526, 425530595, 5897838681, 95307517175, 1211349848865, 18418502466795, 271271920530483, 3640504188151747, 55380807100830022, 781519568000794121, 10995455837187187873
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Row 5 of A240412

Examples

			Some solutions for n=4
..2..3..2..2....2..3..3..2....2..3..3..2....2..3..3..2....2..3..3..2
..2..3..2..1....1..3..1..0....2..1..2..0....1..3..2..0....2..1..1..1
..2..0..0..3....3..0..2..2....2..3..0..0....1..0..3..2....2..0..0..1
..1..0..3..2....1..0..0..2....2..3..0..2....3..2..0..3....1..0..0..2
..2..0..1..2....1..0..0..0....2..1..0..0....3..2..2..2....2..3..3..1
		

A240417 Number of 6Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

129, 2105, 79090, 2051450, 45245148, 1615637679, 38249442962, 955439201951, 28422088797325, 653249891295733, 18365583086851745, 495763997190145130, 12117652634246661607, 341107664098435880768, 8779799870508201530267
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Row 6 of A240412

Examples

			Some solutions for n=3
..2..3..3....3..2..2....2..3..3....3..2..2....2..3..2....3..2..3....3..2..2
..1..3..2....1..2..0....2..1..1....2..0..1....2..3..2....3..0..1....3..0..0
..3..0..0....3..0..0....2..3..0....1..0..2....2..1..2....1..2..0....1..0..0
..2..0..0....3..2..0....2..3..0....2..0..1....2..1..2....1..0..0....3..2..0
..3..0..0....2..1..0....3..0..0....2..0..0....2..0..0....3..0..2....1..2..2
..3..1..1....2..1..1....3..2..0....1..0..0....2..0..3....3..0..0....3..2..0
		

A240411 Number of nX6 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

14, 493, 17075, 773196, 33373526, 1615637679, 74389514201, 3790596926634, 180050906023325, 9401180099632567, 454863378057031995
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Column 6 of A240412

Examples

			Some solutions for n=3
..3..2..2..2..2..2....3..2..2..2..3..2....3..2..2..2..3..3....3..2..3..2..3..3
..2..1..1..1..0..0....2..0..1..0..1..2....2..0..0..0..3..2....3..0..1..1..3..2
..1..3..3..1..1..0....1..0..2..2..0..2....3..1..2..0..1..0....1..0..0..2..2..3
		
Showing 1-10 of 10 results.