cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240437 Number of non-palindromic n-tuples of 5 distinct elements.

Original entry on oeis.org

0, 20, 100, 600, 3000, 15500, 77500, 390000, 1950000, 9762500, 48812500, 244125000, 1220625000, 6103437500, 30517187500, 152587500000, 762937500000, 3814695312500, 19073476562500, 95367421875000, 476837109375000, 2384185742187500, 11920928710937500, 59604644531250000, 298023222656250000
Offset: 1

Views

Author

Mikk Heidemaa, Aug 17 2014

Keywords

Examples

			For n=3 a(3)=100 solutions are:
{0,0,1}, {0,0,2}, {0,0,3}, {0,0,4}, {0,1,1}, {0,1,2}, {0,1,3}, {0,1,4},
{0,2,1}, {0,2,2}, {0,2,3}, {0,2,4}, {0,3,1}, {0,3,2}, {0,3,3}, {0,3,4},
{0,4,1}, {0,4,2}, {0,4,3}, {0,4,4}, {1,0,0}, {1,0,2}, {1,0,3}, {1,0,4},
{1,1,0}, {1,1,2}, {1,1,3}, {1,1,4}, {1,2,0}, {1,2,2}, {1,2,3}, {1,2,4},
{1,3,0}, {1,3,2}, {1,3,3}, {1,3,4}, {1,4,0}, {1,4,2}, {1,4,3}, {1,4,4},
{2,0,0}, {2,0,1}, {2,0,3}, {2,0,4}, {2,1,0}, {2,1,1}, {2,1,3}, {2,1,4},
{2,2,0}, {2,2,1}, {2,2,3}, {2,2,4}, {2,3,0}, {2,3,1}, {2,3,3}, {2,3,4},
{2,4,0}, {2,4,1}, {2,4,3}, {2,4,4}, {3,0,0}, {3,0,1}, {3,0,2}, {3,0,4},
{3,1,0}, {3,1,1}, {3,1,2}, {3,1,4}, {3,2,0}, {3,2,1}, {3,2,2}, {3,2,4},
{3,3,0}, {3,3,1}, {3,3,2}, {3,3,4}, {3,4,0}, {3,4,1}, {3,4,2}, {3,4,4},
{4,0,0}, {4,0,1}, {4,0,2}, {4,0,3}, {4,1,0}, {4,1,1}, {4,1,2}, {4,1,3},
{4,2,0}, {4,2,1}, {4,2,2}, {4,2,3}, {4,3,0}, {4,3,1}, {4,3,2}, {4,3,3},
{4,4,0}, {4,4,1}, {4,4,2}, {4,4,3}.
		

Crossrefs

Programs

  • Maple
    gf := (20*x^2) / (1 - 5*x - 5*x^2 + 25*x^3): ser := series(gf, x, 26):
    seq(coeff(ser,x,n), n=1..25); # Peter Luschny, May 13 2019
  • Mathematica
    Table[1/2 * 5^(n/2) * ((Sqrt[5]-1) * (-1)^n - Sqrt[5]-1) + 5^n, {n, 25}]
  • PARI
    concat([0], Vec( ( (20*x^2) / (1 - 5*x - 5*x^2 + 25*x^3) + O(x^30) ) ) ) \\ Joerg Arndt, Aug 18 2014

Formula

a(n) = 1/2 * 5^(n/2) * ((sqrt(5)-1) * (-1)^n - sqrt(5)-1) + 5^n.
a(n) = 5^n - 5^ceiling(n/2).
a(n) = A000351(n) - A056451(n).
G.f.: (20*x^2) / (1 - 5*x - 5*x^2 + 25*x^3). [corrected by Peter Luschny, May 13 2019]