This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240443 #74 Nov 04 2021 14:10:47 %S A240443 1,3,6,10,15,21,27,34,42,50 %N A240443 Maximal number of points that can be placed on an n X n square grid so that no four of them are vertices of a square with any orientation. %C A240443 a(10) >= 50, a(11) >= 58. - _Robert Israel_, Apr 08 2016 %C A240443 a(12) >= 67. - _Robert Israel_, Apr 12 2016 %C A240443 a(13) >= 76, a(14) >= 86, a(15) >= 95, a(16) >= 106. - _Peter Karpov_, Jun 04 2016 %H A240443 Robert Israel, <a href="/A240443/a240443_1.png">Illustration showing a(10) >= 50</a> %H A240443 Robert Israel, <a href="/A240443/a240443_2.png">Illustration showing a(11) >= 58</a> %H A240443 Robert Israel, <a href="/A240443/a240443_3.png">Illustration showing a(12) >= 67</a> %H A240443 Peter Karpov, <a href="http://inversed.ru/InvMem.htm#InvMem_20">Maximal density subsquare-free arrangements / #Optimization #OpenProblem / 2016.02.22</a>, giving lower bounds for a(1)-a(16). %H A240443 Peter Karpov, <a href="/A240443/a240443_6.png">Best configurations known for n = 13 .. 16</a> %H A240443 Giovanni Resta, <a href="/A240443/a240443.png">Illustration of a(8) and a(9)</a> %H A240443 Dominik Stadlthanner, <a href="/A240443/a240443.py.txt">Python program</a> %H A240443 Ed Wynn, <a href="https://arxiv.org/abs/1810.12975">A comparison of encodings for cardinality constraints in a SAT solver</a>, arXiv:1810.12975 [cs.LO], 2018. %e A240443 On a 9 X 9 grid a maximum of 42 points (x) can be placed so that no four of them are vertices of an (arbitrarily oriented) square. An example: %e A240443 x x . . x . x . x %e A240443 . x . . x x x x . %e A240443 x x x . . x . . x %e A240443 x . x x x . . x x %e A240443 . . . . x x . . . %e A240443 . x . x x . . . x %e A240443 x x x . x . . . x %e A240443 x . x . . . . x x %e A240443 x . . x x x x x . %Y A240443 Cf. A227133 (where we are concerned only with subsquares oriented parallel to the sides of the grid), A240114, A227308, A240444. %K A240443 nonn,hard,more,nice %O A240443 1,2 %A A240443 _Heinrich Ludwig_, May 07 2014 %E A240443 a(10) from _Dominik Stadlthanner_ using integer programming, Apr 08 2020