cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A240456 Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

4, 21, 102, 476, 2200, 10123, 46471, 213000, 975380, 4464474, 20429739, 93474260, 427645941, 1956395954, 8949898045, 40942368765, 187294120155, 856787747966, 3919414321141, 17929510264717, 82019155503670, 375199231601451
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2014

Keywords

Comments

Column 2 of A240460

Examples

			Some solutions for n=4
..2..0....2..0....0..2....2..2....0..0....2..2....2..2....2..0....0..2....2..2
..0..2....0..0....2..0....2..2....2..2....0..0....2..2....3..2....2..2....3..2
..3..3....0..0....3..2....2..0....3..2....2..2....0..2....2..2....2..0....3..2
..3..1....2..2....3..1....2..2....3..2....0..2....0..3....0..0....2..0....2..2
		

Formula

Empirical: a(n) = 8*a(n-1) -20*a(n-2) +34*a(n-3) -84*a(n-4) +92*a(n-5) -68*a(n-6) +222*a(n-7) +13*a(n-8) -251*a(n-9) +25*a(n-10) -495*a(n-11) +485*a(n-12) -44*a(n-13) -180*a(n-14) +554*a(n-15) -648*a(n-16) +14*a(n-17) +152*a(n-18) -190*a(n-19) -140*a(n-20) +397*a(n-21) -273*a(n-22) +75*a(n-23) +167*a(n-24) -136*a(n-25) +27*a(n-26)

A240457 Number of nX3 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

8, 89, 874, 8187, 75167, 682018, 6147372, 55212526, 494809053, 4428808128, 39611173178, 354127003547, 3165102684053, 28284608888395, 252739519980209, 2258253806476180, 20177086997089514, 180275181902738316
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2014

Keywords

Comments

Column 3 of A240460

Examples

			Some solutions for n=4
..2..0..0....2..2..2....0..0..2....0..2..2....0..2..0....2..0..2....0..0..0
..3..1..0....0..0..0....0..0..2....2..0..0....0..2..2....2..0..0....2..0..0
..2..1..2....0..2..2....2..2..0....0..0..2....2..2..0....2..1..2....0..0..0
..0..0..0....0..2..0....0..0..0....0..2..1....2..2..0....0..2..1....2..0..2
		

A240458 Number of nX4 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

16, 375, 7589, 143237, 2632690, 47636104, 854671234, 15259447330, 271656519692, 4827854253348, 85712180553955, 1520764060039331, 26972330503325401, 478273812124771069, 8479592950284098842, 150327053689019608051
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2014

Keywords

Comments

Column 4 of A240460

Examples

			Some solutions for n=4
..2..0..0..0....0..2..2..2....0..0..2..0....0..2..2..0....2..2..2..0
..2..0..0..2....2..2..2..0....2..2..2..2....2..0..2..0....0..2..0..2
..2..2..0..0....2..1..1..0....2..2..0..0....2..2..0..2....2..0..0..2
..0..2..0..2....2..1..3..2....2..0..0..2....2..0..2..0....0..2..2..0
		

A240459 Number of nX5 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

32, 1583, 65723, 2501883, 92193017, 3337483054, 119643524281, 4265146133201, 151546630250473, 5374173813805185, 190357922342008547, 6737907461668482163, 238393662801305197196, 8432427442592587713280, 298224063492597274075079
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2014

Keywords

Comments

Column 5 of A240460

Examples

			Some solutions for n=3
..2..2..2..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..2..0
..0..2..0..0..0....2..2..0..0..2....2..0..2..2..0....0..0..0..0..0
..0..0..2..0..0....2..2..2..2..0....0..0..0..0..0....2..2..2..0..2
		

A240461 Number of 2 X n 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

5, 21, 89, 375, 1583, 6685, 28241, 119319, 504151, 2130189, 9000729, 38030999, 160693343, 678981661, 2868918401, 12122113399, 51219871687, 216420616013, 914447487881, 3863838035639, 16325972308111, 68982542575773
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2014

Keywords

Examples

			Some solutions for n=4:
..2..2..2..0....0..2..0..2....0..2..0..2....2..2..2..0....0..0..0..0
..2..2..2..0....0..3..1..3....0..0..2..0....2..2..2..1....2..2..0..0
		

Crossrefs

Row 2 of A240460.

Formula

Empirical: a(n) = 6*a(n-1) - 7*a(n-2) - 4*a(n-3) + 8*a(n-4).
Empirical g.f.: x*(5 - 9*x - 2*x^2 + 8*x^3) / (1 - 6*x + 7*x^2 + 4*x^3 - 8*x^4). - Colin Barker, Oct 29 2018

A240462 Number of 3Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

12, 102, 874, 7589, 65723, 568370, 4916340, 42530527, 367908385, 3182471383, 27528807013, 238127592175, 2059829147851, 17817722472564, 154124971684131, 1333195242928609, 11532260863126369, 99755106819505532, 862890740313446216
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2014

Keywords

Comments

Row 3 of A240460

Examples

			Some solutions for n=4
..2..2..0..2....0..0..2..2....2..2..2..2....2..0..2..0....0..2..0..2
..0..0..0..0....0..2..0..2....0..0..0..2....0..0..0..2....0..3..1..3
..0..0..2..0....2..2..2..2....3..2..0..1....0..0..0..0....2..2..3..1
		

Formula

Empirical: a(n) = 18*a(n-1) -105*a(n-2) +200*a(n-3) +242*a(n-4) -2119*a(n-5) +7083*a(n-6) -9004*a(n-7) -24192*a(n-8) +72426*a(n-9) -3118*a(n-10) -103236*a(n-11) -4239*a(n-12) +64281*a(n-13) +119026*a(n-14) -161710*a(n-15) +142844*a(n-16) -25892*a(n-17) -337024*a(n-18) +223288*a(n-19) +175280*a(n-20) -145120*a(n-21) -22528*a(n-22) +23040*a(n-23)

A240463 Number of 4Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

28, 476, 8187, 143237, 2501883, 43654661, 761700369, 13290291978, 231879123545, 4045526615228, 70580191049583, 1231367510496942, 21482798448261309, 374794402280678279, 6538751854554181415, 114076545131533814184
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2014

Keywords

Comments

Row 4 of A240460

Examples

			Some solutions for n=4
..2..2..0..2....0..0..2..0....0..0..0..2....0..2..2..2....0..0..2..2
..0..2..2..2....2..2..2..2....2..0..0..0....2..2..0..0....0..0..0..2
..0..2..2..2....2..0..2..2....3..1..0..3....0..2..0..0....0..0..3..2
..0..2..2..0....0..0..2..2....3..3..2..2....3..3..0..0....0..0..2..2
		

A240464 Number of 5Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

66, 2200, 75167, 2632690, 92193017, 3228706651, 113105814752, 3962629938717, 138830275066900, 4863899993991019, 170406516596392953, 5970190697057475835, 209165606073684385931, 7328116621928639369238, 256740568387799086329458
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2014

Keywords

Comments

Row 5 of A240460

Examples

			Some solutions for n=3
..0..0..0....2..2..2....0..0..2....2..0..2....0..2..0....0..2..0....2..0..0
..0..2..2....0..0..0....0..2..2....0..0..0....0..2..0....0..2..1....0..0..2
..2..0..0....2..0..2....2..0..0....0..0..2....2..0..0....0..0..2....0..0..2
..0..0..0....2..0..2....0..0..2....0..2..0....3..1..0....0..2..0....0..2..0
..2..0..0....0..2..2....0..3..2....0..0..0....3..1..2....2..0..1....2..0..1
		
Showing 1-8 of 8 results.