This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240502 #24 Feb 24 2023 10:28:34 %S A240502 1,1,1,1,1,1,6,6,3,3,30,30,10,10,35,21,21,21,42,42,210,10,55,55,330, %T A240502 330,2145,715,5005,5005,6006,6006,3003,91,3094,2210,2210,2210,20995, %U A240502 4845,1938,1938,2261,2261,24871,124355,5720330,5720330,17160990,17160990,8580495 %N A240502 Product of primes appearing in the factorization of n! with even exponents. %C A240502 All terms are squarefree (A005117). - _Michel Marcus_, Feb 15 2016 %H A240502 David A. Corneth, <a href="/A240502/b240502.txt">Table of n, a(n) for n = 0..7585</a> %F A240502 a(n) = rad(n!)/core(n!) = A336643(n!). - _Benoit Cloitre_, Mar 12 2022 %e A240502 In the prime power factorization 2^7*3^4*5*7 of 9! only the exponent of 3 is even. Thus a(9)=3. %t A240502 Table[Times@@Select[FactorInteger[n!],EvenQ[#[[2]]]&][[;;,1]],{n,0,50}] (* _Harvey P. Dale_, Feb 24 2023 *) %o A240502 (PARI) a(n) = {my(f = factor(n!)); for (k=1, #f~, f[k, 2] = 1 - (f[k, 2] % 2);); factorback(f);} \\ _Michel Marcus_, Feb 15 2016 %o A240502 (PARI) a(n) = {my(res=1); forprime(p=2, n\2, e=val(n,p); if(e%2==0,res*=p)); res} %o A240502 val(n, p) = my(r=0); while(n, r+=n\=p); r \\ _David A. Corneth_, Feb 24 2023 %Y A240502 Cf. A000142, A005117, A055204. %K A240502 nonn %O A240502 0,7 %A A240502 _Vladimir Shevelev_, Apr 06 2014 %E A240502 More terms from _Michel Marcus_, Feb 15 2016