cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240502 Product of primes appearing in the factorization of n! with even exponents.

This page as a plain text file.
%I A240502 #24 Feb 24 2023 10:28:34
%S A240502 1,1,1,1,1,1,6,6,3,3,30,30,10,10,35,21,21,21,42,42,210,10,55,55,330,
%T A240502 330,2145,715,5005,5005,6006,6006,3003,91,3094,2210,2210,2210,20995,
%U A240502 4845,1938,1938,2261,2261,24871,124355,5720330,5720330,17160990,17160990,8580495
%N A240502 Product of primes appearing in the factorization of n! with even exponents.
%C A240502 All terms are squarefree (A005117). - _Michel Marcus_, Feb 15 2016
%H A240502 David A. Corneth, <a href="/A240502/b240502.txt">Table of n, a(n) for n = 0..7585</a>
%F A240502 a(n) = rad(n!)/core(n!) = A336643(n!). - _Benoit Cloitre_, Mar 12 2022
%e A240502 In the prime power factorization 2^7*3^4*5*7 of 9! only the exponent of 3 is even. Thus a(9)=3.
%t A240502 Table[Times@@Select[FactorInteger[n!],EvenQ[#[[2]]]&][[;;,1]],{n,0,50}] (* _Harvey P. Dale_, Feb 24 2023 *)
%o A240502 (PARI) a(n) = {my(f = factor(n!)); for (k=1, #f~, f[k, 2] = 1 - (f[k, 2] % 2);); factorback(f);} \\ _Michel Marcus_, Feb 15 2016
%o A240502 (PARI) a(n) = {my(res=1); forprime(p=2, n\2, e=val(n,p); if(e%2==0,res*=p)); res}
%o A240502 val(n, p) = my(r=0); while(n, r+=n\=p); r \\ _David A. Corneth_, Feb 24 2023
%Y A240502 Cf. A000142, A005117, A055204.
%K A240502 nonn
%O A240502 0,7
%A A240502 _Vladimir Shevelev_, Apr 06 2014
%E A240502 More terms from _Michel Marcus_, Feb 15 2016