cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A240560 a(n) = 2^n*E(n,1/2) + 2^(n+1)*E(n+1,0), where E(n,x) the Euler polynomials.

Original entry on oeis.org

0, 0, 1, 0, -11, 0, 211, 0, -6551, 0, 303271, 0, -19665491, 0, 1704396331, 0, -190473830831, 0, 26684005437391, 0, -4581126864886571, 0, 946075012113714451, 0, -231406946026650896711, 0, 66164529094650835995511, 0, -21866924546405967976005251
Offset: 0

Views

Author

Peter Luschny, Apr 17 2014

Keywords

Crossrefs

Programs

  • Maple
    A240560 := n -> euler(n) + 2^(n+1)*euler(n+1, 0):
    seq(A240560(n), n=0..28);
  • Mathematica
    skp[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*If[n==k, 1, x^(n-k)], {k, 0, n}];
    a[n_] := skp[n, 0] + skp[n+1, -1];
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 08 2019 *)

Formula

a(n) = skp(n, 0) + skp(n+1, -1), where skp(n, x) are the Swiss-Knife polynomials A153641.
a(n) = A122045(n) - A155585(n+1).
Showing 1-1 of 1 results.