This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240590 #24 Sep 15 2024 22:00:52 %S A240590 2,2,0,2,3,0,2,0,4,3,2,2,3,3,2,0,1,3,5,5,2,1,1,5,1,7,0,5,2,4,5,1,5,2, %T A240590 7,3,2,2,6,9,4,4,0,7,8,2,7,4,4,8,1,1,4,4,9,7,2,1,9,10,6,1,0,2,0,9,12, %U A240590 7,4,12,6,5,4,5,12,0,8,3,3,10,8,0,2,13,2,13,10,10,1,15,0,7,9,9,3,13,7,4,0,7,5,4,13,2 %N A240590 Number of primes between successive powerful numbers (A001694). %H A240590 Amiram Eldar, <a href="/A240590/b240590.txt">Table of n, a(n) for n = 1..10000</a> %e A240590 a(9) = 4 because A001694(9) = 36, A001694(10) = 49, and there are 4 primes between them: 37, 41, 43 and 47. %o A240590 (PARI) %o A240590 ispowerful(n)={local(h);if(n==1,h=1,h=(vecmin(factor(n)[, 2])>1));return(h)} %o A240590 proxpowerful(n)={local(k);k=n+1;while(!ispowerful(k),k+=1);return(k)} %o A240590 {for(i=1,5000,if(ispowerful(i),m=proxpowerful(i);p=primepi(m)-primepi(i);print1(p, ", ")))} %o A240590 (Python) %o A240590 from math import isqrt %o A240590 from sympy import mobius, integer_nthroot, primepi %o A240590 def A240590(n): %o A240590 def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A240590 def bisection(f,kmin=0,kmax=1): %o A240590 while f(kmax) > kmax: kmax <<= 1 %o A240590 while kmax-kmin > 1: %o A240590 kmid = kmax+kmin>>1 %o A240590 if f(kmid) <= kmid: %o A240590 kmax = kmid %o A240590 else: %o A240590 kmin = kmid %o A240590 return kmax %o A240590 def f(x): %o A240590 c, l = n+x, 0 %o A240590 j = isqrt(x) %o A240590 while j>1: %o A240590 k2 = integer_nthroot(x//j**2,3)[0]+1 %o A240590 w = squarefreepi(k2-1) %o A240590 c -= j*(w-l) %o A240590 l, j = w, isqrt(x//k2**3) %o A240590 c -= squarefreepi(integer_nthroot(x,3)[0])-l %o A240590 return c %o A240590 return -primepi(a:=bisection(f,n,n))+primepi(bisection(lambda x:f(x)+1,a,a)) # _Chai Wah Wu_, Sep 15 2024 %Y A240590 Cf. A001694, A240591. %K A240590 nonn %O A240590 1,1 %A A240590 _Antonio Roldán_, Apr 08 2014