This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240596 #14 Nov 21 2018 18:08:34 %S A240596 107,4201,18181981,29884303,72147193,81927499,208506511,383148631, %T A240596 402473443,1106558899,1391119621,1459314919,1498299289,1945171369, %U A240596 4593570199,7908301729,8052037969,9970592521,10594343761,11304695329,14119758703,15111907009,23157107803 %N A240596 Primes of the form p*q*r + 2 where p, q and r are consecutive primes. %C A240596 All the terms in the sequence, except a(1), are congruent to 1 mod 6. %H A240596 K. D. Bajpai, <a href="/A240596/b240596.txt">Table of n, a(n) for n = 1..3525</a> %e A240596 107 is prime and appears in the sequence because 107 = (3*5*7)+2. %e A240596 4201 is prime and appears in the sequence because 4201 = (13*17*19)+2. %p A240596 KD := proc() local a, b; a:=ithprime(n)*ithprime(n+1)*ithprime(n+2); b:=a+2; if isprime(b) then RETURN (b); fi; end: seq(KD(), n=1..1000); %t A240596 Select[Table[Prime[k]*Prime[k+1]*Prime[k+2]+2,{k,1,300}],PrimeQ] %t A240596 Select[Times@@@Partition[Prime[Range[600]],3,1]+2,PrimeQ] (* _Harvey P. Dale_, Nov 21 2018 *) %o A240596 (PARI) s=[]; for(k=1, 1000, t=prime(k)*prime(k+1)*prime(k+2)+2; if(isprime(t), s=concat(s, t))); s \\ _Colin Barker_, Apr 09 2014 %Y A240596 Cf. A000040, A048880, A051507. %K A240596 nonn %O A240596 1,1 %A A240596 _K. D. Bajpai_, Apr 08 2014