A240602 Recursive palindromes in base 2: palindromes n where each half of the digits of n is also a recursive palindrome.
0, 1, 11, 101, 111, 1111, 11011, 11111, 101101, 111111, 1010101, 1011101, 1110111, 1111111, 11111111, 111101111, 111111111, 1101111011, 1111111111, 11011011011, 11011111011, 11111011111, 11111111111, 101101101101, 111111111111, 1011010101101, 1011011101101, 1111110111111, 1111111111111
Offset: 1
Examples
11011 is in the sequence since it is a palindrome of 5 digits, and the first floor(5/2) digits of it, 11, is also a term. 1001 and 10001 are not in a(n) since 10 is not in a(n).
Links
- Lior Manor, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
FromDigits /@ Select[IntegerDigits[Range[2^12], 2], And[PalindromeQ@ Take[#, Floor[Length[#]/2]], PalindromeQ[#]] &] (* Michael De Vlieger, Nov 08 2017 *)
Comments