This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240623 #11 Sep 14 2017 03:53:31 %S A240623 11,13,17,31,53,61,71,79,151,167,229,233,251,263,311,313,331,337,349, %T A240623 367,389,409,419,443,673,751,947,971,991,1433,1531,1699,1733,1993, %U A240623 2011,2027,2053,2063,2081,2111,2141,2153,2221,2333,2393,2503,2521,2833,2963 %N A240623 Prime numbers n such that replacing each digit d in the decimal expansion of n with d^d produces a prime. Zeros are allowed with the convention 0^0 = 1. %e A240623 263 is in the sequence because 263 becomes 44665627 which is also prime, where 44665627 is the concatenation of the numbers (2^2, 6^6, 3^3) = (4, 46656, 27). %e A240623 2503 is in the sequence because 2503 becomes 43125127 which is also prime, where 43125127 is the concatenation of the numbers (2^2, 5^5, 0^0, 3^3) = (4, 3125, 1, 27). %p A240623 with(numtheory):T:=array(1..10):L:=array(1..10): %p A240623 for n from 1 to 1000 do: %p A240623 p:=ithprime(n):k:=0:s:=0:j:=0: %p A240623 x:=convert(p,base,10):n1:=nops(x): %p A240623 for m from n1 by -1 to 1 do: %p A240623 k:=k+1:T[k]:=x[k]^x[k]:L[k]:=length(T[k]): %p A240623 od: %p A240623 n2:=sum('L[j]', 'j'=1..n1):s2:=0: %p A240623 for u from n1 by -1 to 1 do: %p A240623 s2:=s2+T[u]*10^(n2-L[u]):n2:=n2-L[u]: %p A240623 od: %p A240623 if type(s2,prime)=true %p A240623 then %p A240623 printf(`%d, `,p): %p A240623 else %p A240623 fi: %p A240623 od: %Y A240623 Cf. A068492, A240624. %K A240623 nonn,base %O A240623 1,1 %A A240623 _Michel Lagneau_, Apr 09 2014