cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240624 Prime numbers n such that replacing each digit d in the decimal expansion of n with d^d produces a prime. Zeros are not allowed.

This page as a plain text file.
%I A240624 #15 Sep 13 2017 00:05:56
%S A240624 11,13,17,31,53,61,71,79,151,167,229,233,251,263,311,313,331,337,349,
%T A240624 367,389,419,443,673,751,947,971,991,1433,1531,1699,1733,1993,2111,
%U A240624 2141,2153,2221,2333,2393,2521,2833,2963,3137,3167,3323,3343,3371,3389,3391
%N A240624 Prime numbers n such that replacing each digit d in the decimal expansion of n with d^d produces a prime. Zeros are not allowed.
%C A240624 Subsequence of A240623.
%C A240624 If zeros are counted with the convention 0^0 = 1, we find the additional primes 409, 2011, 2027, 2053, 2063, 2081, 2503, 3037, 3061, 3067, 4093, 6029, 6079, 6203, 7001, 8011, 8101, 8807, 9043, 9403, 10103, 10141, 10211, 10321, 10513, 10663, 11003, 11027, 11503, 12037,...
%H A240624 Vincenzo Librandi, <a href="/A240624/b240624.txt">Table of n, a(n) for n = 1..1000</a>
%e A240624 263 is in the sequence because 263 becomes 44665627 which is also prime, where 44665627 is the concatenation (2^2, 6^6, 3^3) = (4, 46656, 27).
%t A240624 lst={};f[n_]:=Block[{a=IntegerDigits[n],b="",k=1,l},l=Length[a];While[k<l+1,b=StringJoin[b,ToString[a[[k]]^a[[k]]]];k++];ToExpression[b]];Do[If[PrimeQ[f[Prime[n]]],AppendTo[lst,Prime[n]]],{n,1,600}];lst
%t A240624 ddQ[n_]:=Module[{idn=IntegerDigits[n]},!MemberQ[idn,0]&&PrimeQ[FromDigits[ Flatten[ IntegerDigits/@ (idn^idn)]]]]; Select[Prime[Range[500]],ddQ] (* _Harvey P. Dale_, Dec 16 2014 *)
%Y A240624 Cf. A068492, A240623.
%K A240624 nonn,base
%O A240624 1,1
%A A240624 _Michel Lagneau_, Apr 09 2014