cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240626 Number of nX3 0..3 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..3 introduced in row major order.

This page as a plain text file.
%I A240626 #6 Jul 23 2025 11:02:48
%S A240626 4,109,4369,180480,7462748,308596193,12761076882,527696013254,
%T A240626 21821286982448,902353910690193,37314141073241635,1543014450929326860,
%U A240626 63806737265585893957,2638536352033321770102,109108761540671975977499
%N A240626 Number of nX3 0..3 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..3 introduced in row major order.
%C A240626 Column 3 of A240629
%H A240626 R. H. Hardin, <a href="/A240626/b240626.txt">Table of n, a(n) for n = 1..210</a>
%F A240626 Empirical: a(n) = 42*a(n-1) -20*a(n-2) -142*a(n-3) -5711*a(n-4) -3710*a(n-5) +80515*a(n-6) +372388*a(n-7) -2230154*a(n-8) +4624628*a(n-9) -9890649*a(n-10) +14198608*a(n-11) -3659227*a(n-12) -14748976*a(n-13) +83450532*a(n-14) -193948732*a(n-15) +312395335*a(n-16) -431237402*a(n-17) +231099273*a(n-18) +119705446*a(n-19) -536897174*a(n-20) +821278530*a(n-21) -566571559*a(n-22) +608221048*a(n-23) -508930511*a(n-24) +335483670*a(n-25) +83749796*a(n-26) -1224993018*a(n-27) +1081779799*a(n-28) -819999594*a(n-29) -208353027*a(n-30) +140757132*a(n-31) +622919226*a(n-32) +311776740*a(n-33) +25763409*a(n-34) +1679390712*a(n-35) -88064901*a(n-36) +41324256*a(n-37) +852316668*a(n-38) -80513676*a(n-39) -299431647*a(n-40) -419191038*a(n-41) -212845401*a(n-42) -113413446*a(n-43) -328430538*a(n-44) -226393866*a(n-45) -43046721*a(n-46)
%e A240626 Some solutions for n=4
%e A240626 ..0..1..1....0..1..2....0..1..2....0..0..1....0..1..0....0..0..1....0..1..1
%e A240626 ..0..2..3....0..1..2....0..2..1....1..2..2....1..2..3....2..1..1....0..2..0
%e A240626 ..3..3..1....1..3..1....1..3..0....2..0..1....2..0..3....3..0..1....3..2..0
%e A240626 ..0..1..0....1..0..2....1..2..2....1..2..3....1..1..0....0..1..0....3..0..3
%K A240626 nonn
%O A240626 1,1
%A A240626 _R. H. Hardin_, Apr 09 2014