A240644 Number of nX3 0..1 arrays with no element equal to the same number of vertical neighbors as horizontal neighbors, with new values 0..1 introduced in row major order.
1, 2, 6, 8, 23, 60, 149, 396, 1050, 2814, 7571, 20372, 54879, 147946, 399002, 1076312, 2903613, 7833652, 21135287, 57024772, 153859830, 415135862, 1120101045, 3022215348, 8154444873, 22002086130, 59365425382, 160178219728, 432188727639
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0....0..0..0....0..1..0....0..0..0....0..1..0....0..1..0....0..0..0 ..0..1..0....1..0..1....0..1..0....1..1..1....0..1..0....0..1..0....1..0..1 ..1..0..1....1..0..1....0..1..0....0..1..0....1..1..1....0..1..0....1..0..1 ..1..0..1....1..0..1....0..1..0....0..1..0....0..0..0....1..1..1....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4*a(n-1) -3*a(n-2) -2*a(n-3) +2*a(n-4) +2*a(n-5) -7*a(n-6) -8*a(n-7) +15*a(n-8) +4*a(n-9) -8*a(n-10) -4*a(n-11) +15*a(n-12) +8*a(n-13) -7*a(n-14) -2*a(n-15) +2*a(n-16) +2*a(n-17) -3*a(n-18) -4*a(n-19) -a(n-20)
Comments