cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240645 Number of nX4 0..1 arrays with no element equal to the same number of vertical neighbors as horizontal neighbors, with new values 0..1 introduced in row major order.

This page as a plain text file.
%I A240645 #6 Jul 23 2025 11:04:32
%S A240645 2,3,8,18,61,168,526,1643,5524,18762,65149,228440,807770,2872483,
%T A240645 10255424,36709394,131630309,472542776,1697728566,6102699043,
%U A240645 21944561100,78928279002,283926402165,1021465508456,3675119389202,13223276351667
%N A240645 Number of nX4 0..1 arrays with no element equal to the same number of vertical neighbors as horizontal neighbors, with new values 0..1 introduced in row major order.
%C A240645 Column 4 of A240649
%H A240645 R. H. Hardin, <a href="/A240645/b240645.txt">Table of n, a(n) for n = 1..210</a>
%F A240645 Empirical: a(n) = 5*a(n-1) -5*a(n-2) +4*a(n-3) -3*a(n-4) -49*a(n-5) +10*a(n-6) +15*a(n-7) +45*a(n-8) +124*a(n-9) +131*a(n-10) +301*a(n-11) +18*a(n-12) -615*a(n-13) -201*a(n-14) -1508*a(n-15) -823*a(n-16) -413*a(n-17) -254*a(n-18) +2467*a(n-19) +793*a(n-20) +4516*a(n-21) +1071*a(n-22) +2289*a(n-23) -2289*a(n-25) -1071*a(n-26) -4516*a(n-27) -793*a(n-28) -2467*a(n-29) +254*a(n-30) +413*a(n-31) +823*a(n-32) +1508*a(n-33) +201*a(n-34) +615*a(n-35) -18*a(n-36) -301*a(n-37) -131*a(n-38) -124*a(n-39) -45*a(n-40) -15*a(n-41) -10*a(n-42) +49*a(n-43) +3*a(n-44) -4*a(n-45) +5*a(n-46) -5*a(n-47) +a(n-48)
%e A240645 Some solutions for n=4
%e A240645 ..0..0..0..1....0..1..0..1....0..1..0..1....0..0..0..1....0..1..1..0
%e A240645 ..1..0..1..1....0..1..0..1....0..1..0..1....1..1..1..1....0..0..0..0
%e A240645 ..1..1..0..1....0..1..0..1....1..0..1..0....0..1..0..1....0..0..0..0
%e A240645 ..1..0..0..0....0..1..0..1....1..0..1..0....0..1..0..1....0..1..1..0
%K A240645 nonn
%O A240645 1,1
%A A240645 _R. H. Hardin_, Apr 09 2014