cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240649 T(n,k)=Number of nXk 0..1 arrays with no element equal to the same number of vertical neighbors as horizontal neighbors, with new values 0..1 introduced in row major order.

This page as a plain text file.
%I A240649 #6 Jul 23 2025 11:05:01
%S A240649 0,1,1,1,2,1,2,2,2,2,3,3,6,3,3,5,6,8,8,6,5,8,10,23,18,23,10,8,13,21,
%T A240649 60,61,61,60,21,13,21,42,149,168,232,168,149,42,21,34,86,396,526,953,
%U A240649 953,526,396,86,34,55,179,1050,1643,4343,5304,4343,1643,1050,179,55,89,370
%N A240649 T(n,k)=Number of nXk 0..1 arrays with no element equal to the same number of vertical neighbors as horizontal neighbors, with new values 0..1 introduced in row major order.
%C A240649 Table starts
%C A240649 ..0...1....1.....2......3.......5.........8.........13..........21...........34
%C A240649 ..1...2....2.....3......6......10........21.........42..........86..........179
%C A240649 ..1...2....6.....8.....23......60.......149........396........1050.........2814
%C A240649 ..2...3....8....18.....61.....168.......526.......1643........5524........18762
%C A240649 ..3...6...23....61....232.....953......4343......19458.......90165.......421048
%C A240649 ..5..10...60...168....953....5304.....29481.....168320......990468......5920658
%C A240649 ..8..21..149...526...4343...29481....227270....1748201....14230080....116070258
%C A240649 .13..42..396..1643..19458..168320...1748201...18030130...191002776...2052931147
%C A240649 .21..86.1050..5524..90165..990468..14230080..191002776..2764522654..39961388170
%C A240649 .34.179.2814.18762.421048.5920658.116070258.2052931147.39961388170.770199142784
%H A240649 R. H. Hardin, <a href="/A240649/b240649.txt">Table of n, a(n) for n = 1..220</a>
%F A240649 Empirical for column k:
%F A240649 k=1: a(n) = a(n-1) +a(n-2)
%F A240649 k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
%F A240649 k=3: [order 20]
%F A240649 k=4: [order 48]
%e A240649 Some solutions for n=4 k=4
%e A240649 ..0..0..0..1....0..0..0..0....0..1..0..0....0..0..1..1....0..0..0..0
%e A240649 ..1..1..1..1....1..0..1..1....0..1..1..1....1..1..0..0....1..1..0..1
%e A240649 ..0..1..0..1....1..0..0..0....0..1..0..0....0..0..1..1....0..0..0..1
%e A240649 ..0..1..0..1....1..0..1..1....1..1..1..1....1..1..0..0....1..1..0..1
%Y A240649 Column 1 is A000045(n-1)
%Y A240649 Column 2 is A240513(n-2)
%K A240649 nonn,tabl
%O A240649 1,5
%A A240649 _R. H. Hardin_, Apr 09 2014