A240651 Number of nX3 0..1 arrays with no element equal to exactly one horizontal or vertical neighbor, with new values 0..1 introduced in row major order.
1, 2, 9, 17, 43, 136, 402, 1180, 3518, 10525, 31454, 94059, 281484, 842574, 2522415, 7552239, 22613578, 67714627, 202772197, 607215863, 1818375168, 5445371326, 16306993036, 48833947510, 146241553581, 437945846008, 1311506541151
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0....0..1..0....0..0..0....0..0..0....0..0..1....0..0..0....0..0..1 ..0..0..0....1..0..1....0..1..0....0..0..0....0..0..0....0..0..0....0..0..0 ..0..0..0....0..1..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0 ..0..0..0....1..0..1....0..0..1....1..0..0....0..0..1....0..0..1....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -11*a(n-4) -12*a(n-5) -9*a(n-6) +15*a(n-7) +23*a(n-8) +20*a(n-9) -6*a(n-10) -15*a(n-11) -12*a(n-12) -2*a(n-13) +3*a(n-14) +a(n-15)
Comments