cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240652 Number of nX4 0..1 arrays with no element equal to exactly one horizontal or vertical neighbor, with new values 0..1 introduced in row major order.

This page as a plain text file.
%I A240652 #6 Jul 23 2025 11:05:21
%S A240652 1,3,17,91,352,1545,7154,33269,154974,724237,3394852,15935126,
%T A240652 74854028,351802659,1653966146,7777530146,36577083726,172031838421,
%U A240652 809149353515,3805931188358,17901967673107,84206433807963,396088887787212
%N A240652 Number of nX4 0..1 arrays with no element equal to exactly one horizontal or vertical neighbor, with new values 0..1 introduced in row major order.
%C A240652 Column 4 of A240656
%H A240652 R. H. Hardin, <a href="/A240652/b240652.txt">Table of n, a(n) for n = 1..210</a>
%F A240652 Empirical: a(n) = 6*a(n-1) -5*a(n-2) +2*a(n-3) -17*a(n-4) -64*a(n-5) -92*a(n-6) +24*a(n-7) +159*a(n-8) +803*a(n-9) +1491*a(n-10) +1970*a(n-11) +1678*a(n-12) -661*a(n-13) -5546*a(n-14) -11953*a(n-15) -18840*a(n-16) -20162*a(n-17) -13954*a(n-18) +3124*a(n-19) +29982*a(n-20) +57408*a(n-21) +71870*a(n-22) +67778*a(n-23) +36825*a(n-24) -12790*a(n-25) -63687*a(n-26) -92941*a(n-27) -91422*a(n-28) -61244*a(n-29) -12245*a(n-30) +25219*a(n-31) +41068*a(n-32) +34422*a(n-33) +19986*a(n-34) +4392*a(n-35) -450*a(n-36) +906*a(n-37) +3453*a(n-38) +4580*a(n-39) +4351*a(n-40) +1645*a(n-41) -1495*a(n-42) -2735*a(n-43) -2047*a(n-44) -913*a(n-45) -160*a(n-46) +116*a(n-47) +114*a(n-48) +44*a(n-49) +8*a(n-50)
%e A240652 Some solutions for n=4
%e A240652 ..0..0..0..1....0..0..0..0....0..1..1..1....0..1..1..0....0..0..0..0
%e A240652 ..0..0..0..0....0..0..0..0....1..1..0..1....1..1..1..1....0..0..0..0
%e A240652 ..1..0..0..0....0..0..0..0....1..0..1..1....1..1..0..1....1..1..0..0
%e A240652 ..0..1..0..0....1..0..0..1....1..1..1..0....0..1..1..1....1..1..0..0
%K A240652 nonn
%O A240652 1,2
%A A240652 _R. H. Hardin_, Apr 09 2014