This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240668 #13 Apr 11 2014 02:31:44 %S A240668 1,2,0,1,0,0,2,1,0,0,2,0,1,2,0,1,0,0,2,0,3,3,0,0,1,2,0,1,0,0,1,1,0,0, %T A240668 1,0,1,2,0,0,1,5,0,1,0,0,3,0,1,1,0,2,0,0,2,1,0,0,3,0,1,2,0,3,0,0,2,0, %U A240668 5,2,0,0,1,3,0,1,0,0,2,0,1,1,0,1,0,0,4 %N A240668 Number of the first odd exponents in the prime power factorization of (2*n)!. %C A240668 According to Chen's theorem, the sequence is unbounded. %H A240668 Peter J. C. Moses, <a href="/A240668/b240668.txt">Table of n, a(n) for n = 1..10000</a> %H A240668 D. Berend, <a href="http://dx.doi.org/10.1006/jnth.1997.2106">Parity of exponents in the factorization of n!</a>, J. Number Theory, 64 (1997), 13-19. %H A240668 Y.-G. Chen, <a href="http://dx.doi.org/10.1016/S0022-314X(03)00013-1">On the parity of exponents in the standard factorization of n!</a>, J. Number Theory, 100 (2003), 326-331. %F A240668 a(n)*A240606(n) = 0. %e A240668 32! = 2^31*3^14*5^7*7^4*11^2*13^2*17*19*23*29*31, and only the first 1 exponent is odd, so a(16) = 1. %t A240668 Map[Count[First[Split[Mod[Last[Transpose[FactorInteger[(2*#)!]]],2]]],1]&,Range[75]] (* _Peter J. C. Moses_, Apr 10 2014 *) %o A240668 (PARI) a(n) = {my(f = factor((2*n)!)); my(nb = 0); my(i = 1); while((i <= #f~) && (f[i, 2] % 2), nb++; i++;); nb;} \\ _Michel Marcus_, Apr 10 2014 %Y A240668 Cf. A240537, A240606, A240619, A240620. %K A240668 nonn %O A240668 1,2 %A A240668 _Vladimir Shevelev_, Apr 10 2014 %E A240668 More terms from _Michel Marcus_, Apr 10 2014