cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240668 Number of the first odd exponents in the prime power factorization of (2*n)!.

This page as a plain text file.
%I A240668 #13 Apr 11 2014 02:31:44
%S A240668 1,2,0,1,0,0,2,1,0,0,2,0,1,2,0,1,0,0,2,0,3,3,0,0,1,2,0,1,0,0,1,1,0,0,
%T A240668 1,0,1,2,0,0,1,5,0,1,0,0,3,0,1,1,0,2,0,0,2,1,0,0,3,0,1,2,0,3,0,0,2,0,
%U A240668 5,2,0,0,1,3,0,1,0,0,2,0,1,1,0,1,0,0,4
%N A240668 Number of the first odd exponents in the prime power factorization of (2*n)!.
%C A240668 According to Chen's theorem, the sequence is unbounded.
%H A240668 Peter J. C. Moses, <a href="/A240668/b240668.txt">Table of n, a(n) for n = 1..10000</a>
%H A240668 D. Berend, <a href="http://dx.doi.org/10.1006/jnth.1997.2106">Parity of exponents in the factorization of n!</a>, J. Number Theory, 64 (1997), 13-19.
%H A240668 Y.-G. Chen, <a href="http://dx.doi.org/10.1016/S0022-314X(03)00013-1">On the parity of exponents in the standard factorization of n!</a>, J. Number Theory, 100 (2003), 326-331.
%F A240668 a(n)*A240606(n) = 0.
%e A240668 32! = 2^31*3^14*5^7*7^4*11^2*13^2*17*19*23*29*31, and only the first 1 exponent is odd, so a(16) = 1.
%t A240668 Map[Count[First[Split[Mod[Last[Transpose[FactorInteger[(2*#)!]]],2]]],1]&,Range[75]] (* _Peter J. C. Moses_, Apr 10 2014 *)
%o A240668 (PARI) a(n) = {my(f = factor((2*n)!)); my(nb = 0); my(i = 1); while((i <= #f~) && (f[i, 2] % 2), nb++; i++;); nb;} \\ _Michel Marcus_, Apr 10 2014
%Y A240668 Cf. A240537, A240606, A240619, A240620.
%K A240668 nonn
%O A240668 1,2
%A A240668 _Vladimir Shevelev_, Apr 10 2014
%E A240668 More terms from _Michel Marcus_, Apr 10 2014