cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240672 Number of the first evil exponents (A001969) in the prime power factorization of (2n)!.

This page as a plain text file.
%I A240672 #12 Aug 11 2014 22:46:11
%S A240672 0,1,0,0,0,2,0,3,0,1,0,0,4,0,0,0,0,2,0,0,1,0,0,1,0,0,0,1,2,0,1,2,0,1,
%T A240672 0,0,2,0,0,2,0,0,0,1,1,0,2,0,2,0,0,1,1,0,2,0,0,0,9,2,0,1,1,0,0,2,0,0,
%U A240672 1,0,0,1,0,0,0,2,1,0,2,0,3,0,0,1,1,0,2
%N A240672 Number of the first evil exponents (A001969) in the prime power factorization of (2n)!.
%C A240672 Conjecture: The sequence is unbounded. (This conjecture does not follow from Chen's theorem.)
%H A240672 Peter J. C. Moses, <a href="/A240672/b240672.txt">Table of n, a(n) for n = 1..2000</a>
%H A240672 Y.-G. Chen, <a href="http://dx.doi.org/10.1016/S0022-314X(03)00013-1">On the parity of exponents in the standard factorization of n!</a>, J. Number Theory, 100 (2003), 326-331.
%F A240672 a(n)*A240669(n) = 0.
%e A240672 26! = 2^23*3^10*5^6*7^3*11^2*13^2*17*19*23, and the first 4 exponents (23,10,6,3) are evil, so a(13) = 4.
%t A240672 Map[Count[First[Split[Map[EvenQ[DigitCount[#,2][[1]]]&,Last[Transpose[FactorInteger[(2*#)!]]&[#]]]]],True]&,Range[75]] (* _Peter J. C. Moses_, Apr 10 2014 *)
%Y A240672 Cf. A001969, A240537, A240606, A240619, A240620, A240668, A240669, A240670.
%K A240672 nonn
%O A240672 1,6
%A A240672 _Vladimir Shevelev_, Apr 10 2014