This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240683 #9 Sep 06 2014 15:05:35 %S A240683 1,21,378,7056,143325,3207897,79170399,2146836978,63641666088, %T A240683 2051450651250,71530799628288,2684845732979592,107992630908804096, %U A240683 4636019437800293718,211623646464000000000,10237455825414473977524,523244238837133507448832,28177157277452320985386539 %N A240683 Number of forests with n labeled nodes and 6 trees. %H A240683 Alois P. Heinz, <a href="/A240683/b240683.txt">Table of n, a(n) for n = 6..200</a> %F A240683 a(n) = n^(n-12) * (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^5 + 40*n^4 + 835*n^3 + 10960*n^2 + 87636*n + 332640)/3840. - _Vaclav Kotesovec_, Sep 06 2014 %p A240683 T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1, %p A240683 `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)* %p A240683 T(n-j, m-1), j=1..n-m+1)))) %p A240683 end: %p A240683 a:= n-> T(n, 6): %p A240683 seq(a(n), n=6..30); %t A240683 Table[n^(n-12) * (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^5 + 40*n^4 + 835*n^3 + 10960*n^2 + 87636*n + 332640)/3840,{n,6,25}] (* _Vaclav Kotesovec_, Sep 06 2014 *) %Y A240683 Column m=6 of A105599. A diagonal of A138464. %K A240683 nonn %O A240683 6,2 %A A240683 _Alois P. Heinz_, Apr 10 2014