This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240684 #9 Sep 06 2014 15:09:49 %S A240684 1,28,630,14070,331485,8411634,231354123,6899167275,222569372025, %T A240684 7741879425280,289297137120992,11570476164077376,493535471267193810, %U A240684 22376155441920000000,1074961750207964923710,54561107576767408522752,2918071167402563863036269 %N A240684 Number of forests with n labeled nodes and 7 trees. %H A240684 Alois P. Heinz, <a href="/A240684/b240684.txt">Table of n, a(n) for n = 7..200</a> %F A240684 a(n) = n^(n-14) * (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^6 + 51*n^5 + 1385*n^4 + 24885*n^3 + 303766*n^2 + 2333976*n + 8648640)/46080. - _Vaclav Kotesovec_, Sep 06 2014 %p A240684 T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1, %p A240684 `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)* %p A240684 T(n-j, m-1), j=1..n-m+1)))) %p A240684 end: %p A240684 a:= n-> T(n, 7): %p A240684 seq(a(n), n=7..30); %t A240684 Table[n^(n-14) * (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^6 + 51*n^5 + 1385*n^4 + 24885*n^3 + 303766*n^2 + 2333976*n + 8648640)/46080,{n,7,25}] (* _Vaclav Kotesovec_, Sep 06 2014 *) %Y A240684 Column m=7 of A105599. A diagonal of A138464. %K A240684 nonn %O A240684 7,2 %A A240684 _Alois P. Heinz_, Apr 10 2014