This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240691 #12 Jun 02 2018 11:01:19 %S A240691 1,0,1,1,1,3,1,6,2,10,4,17,7,27,14,41,25,63,42,95,70,140,113,207,176, %T A240691 302,272,436,411,628,610,897,897,1270,1303,1791,1869,2509,2661,3492, %U A240691 3753,4838,5249,6665,7294,9130,10066,12453,13799,16902,18815,22831,25511 %N A240691 Number of partitions p of n such that (# 1s in p) = (#1s in conjugate(p)). %F A240691 a(n) = A240690(n+1) - A240690(n) for n >= 1. %F A240691 a(n) + 2*A240690(n) = A000041(n) for n >= 1. %F A240691 a(n) + a(n-1) = A002865(n) = A187219(n) = A085811(n+3), in all cases for n >= 2. - _Omar E. Pol_, Mar 07 2015 %F A240691 a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi / (24*sqrt(2)*n^(3/2)). - _Vaclav Kotesovec_, Jun 02 2018 %e A240691 a(6) counts these 3 partitions: 33, 321, 222, of which the respective conjugates are 222, 321, 33. %t A240691 z = 53; f[n_] := f[n] = IntegerPartitions[n]; c[p_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; (* conjugate of partition p *) %t A240691 Table[Count[f[n], p_ /; Count[p, 1] < Count[c[p], 1]], {n, 1, z}] (* A240690 *) %t A240691 Table[Count[f[n], p_ /; Count[p, 1] <= Count[c[p], 1]], {n, 1, z}] (* A240690(n+1) *) %t A240691 Table[Count[f[n], p_ /; Count[p, 1] == Count[c[p], 1]], {n, 1, z}] (* A240691 *) %Y A240691 Cf. A240690, A000041. %K A240691 nonn,easy %O A240691 1,6 %A A240691 _Clark Kimberling_, Apr 11 2014